
1.1  WHAT IS PHYSICS ?

Humans have always been curious about the world around
them. The night sky with its bright celestial objects has
fascinated humans since time immemorial. The regular
repetitions of the day and night, the annual cycle of seasons,
the eclipses, the tides, the volcanoes, the rainbow have always
been a source of wonder. The world has an astonishing variety
of materials and a bewildering diversity of life and behaviour.
The inquiring and imaginative human mind has responded
to the wonder and awe of nature in different ways. One kind
of response from the earliest times has been to observe the
physical environment carefully, look for any meaningful
patterns and relations in natural phenomena, and build and
use new tools to interact with nature.  This human endeavour
led, in course of time, to modern science and technology.

The word Science originates from the Latin verb Scientia

meaning ‘to know’.  The Sanskrit word Vijnan and the Arabic
word Ilm convey similar meaning, namely ‘knowledge’.
Science, in a broad sense, is as old as human species. The
early civilisations of Egypt, India, China, Greece, Mesopotamia
and many others made vital contributions to its progress.
From the sixteenth century onwards, great strides were made
in science in Europe. By the middle of the twentieth century,
science had become a truly international enterprise, with
many cultures and countries contributing to its rapid growth.

What is Science and what is the so-called Scientific
Method?  Science is a systematic attempt to understand
natural phenomena in as much detail and depth as possible,
and use the knowledge so gained to predict, modify and
control phenomena. Science is exploring, experimenting and
predicting from what we see around us. The curiosity to learn
about the world, unravelling the secrets of nature is the first
step towards the discovery of science. The scientific method
involves several interconnected steps : Systematic
observations, controlled experiments, qualitative and
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quantitative reasoning, mathematical
modelling, prediction and verification or
falsification of theories. Speculation and
conjecture also have a place in science; but
ultimately, a scientific theory, to be acceptable,
must be verified by relevant observations  or
experiments. There is much philosophical
debate about the nature and method of science
that we need not discuss here.

The interplay of theory and observation (or
experiment) is basic to the progress of science.
Science is ever dynamic. There is no ‘final’
theory in science and no unquestioned
authority among scientists.  As observations
improve in detail and precision or experiments
yield new results, theories must account for
them, if necessary, by introducing modifications.
Sometimes the modifications may not be drastic
and may lie within the framework of existing
theory.  For example, when Johannes Kepler
(1571-1630) examined the extensive data on
planetary motion collected by Tycho Brahe
(1546-1601), the planetary circular orbits in
heliocentric  theory (sun at the centre of the
solar system) imagined by Nicolas Copernicus
(1473–1543) had to be replaced by elliptical
orbits to fit the data better.  Occasionally,
however, the  existing theory is simply unable
to explain new observations.  This causes a
major upheaval in science. In the beginning of
the twentieth century, it was realised that
Newtonian mechanics, till then a very
successful theory, could not explain some of the
most basic features of atomic phenomena.
Similarly, the then accepted wave picture of light
failed to explain the photoelectric effect properly.
This led to the development of a  radically new
theory (Quantum Mechanics) to deal with atomic
and molecular phenomena.

Just as a new experiment may suggest an
alternative theoretical model, a theoretical
advance may suggest what to look for in some
experiments.  The result of experiment of
scattering of alpha particles by gold foil, in 1911
by Ernest Rutherford (1871–1937) established
the nuclear model of the atom, which then
became the basis of the quantum theory of
hydrogen atom given in 1913 by Niels Bohr
(1885–1962). On the other hand, the concept of
antiparticle was first introduced theoretically by
Paul Dirac (1902–1984) in 1930 and confirmed
two years later by the experimental discovery of
positron (antielectron) by Carl Anderson.

Physics is a basic discipline in the category

of Natural Sciences, which also includes other
disciplines like Chemistry and Biology. The word

Physics comes from a Greek word meaning
nature. Its Sanskrit equivalent is Bhautiki that
is used to refer to the study of the physical world.

A precise definition of this discipline is neither
possible nor necessary.  We can broadly describe

physics as a study of the basic laws of  nature
and their manifestation in different natural

phenomena.  The scope of physics is described
briefly in the next section.  Here we remark on
two principal thrusts in physics :  unification
and reduction.

In Physics, we attempt to explain diverse

physical phenomena in terms of a few concepts
and laws.  The effort is to see the physical world
as manifestation of some universal laws in

different domains and conditions.  For example,
the same law of gravitation (given by Newton)

describes the fall of an apple to the ground, the
motion of the moon around the earth and the

motion of planets around the sun. Similarly, the
basic laws of electromagnetism (Maxwell’s
equations) govern all electric and magnetic

phenomena. The attempts to unify fundamental
forces of nature (section 1.4) reflect this same

quest for unification.
A related effort is to derive the properties of a

bigger, more complex, system from the properties

and interactions of its constituent simpler parts.
This approach is called reductionism and is

at the heart of physics.  For example, the subject
of thermodynamics, developed in the nineteenth
century, deals with bulk systems in terms of

macroscopic quantities such as temperature,
internal energy, entropy, etc.  Subsequently, the

subjects of kinetic theory and statistical
mechanics interpreted these quantities in terms

of the properties of the molecular constituents
of the bulk system.  In particular, the
temperature was seen to be related to the average

kinetic energy of molecules  of the system.

1.2  SCOPE AND EXCITEMENT OF PHYSICS

We can get some idea of the scope of physics by
looking at its various sub-disciplines.  Basically,
there are two domains of interest : macroscopic
and microscopic. The macroscopic domain
includes phenomena at the laboratory, terrestrial
and astronomical scales. The microscopic domain
includes atomic, molecular and nuclear
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Ampere and Faraday, and encapsulated by
Maxwell in his famous set of equations. The
motion of a current-carrying conductor in a
magnetic field, the response of a circuit to an ac
voltage (signal), the working of an antenna, the
propagation of radio waves in the ionosphere, etc.,
are problems of electrodynamics. Optics deals
with the phenomena involving light. The working
of telescopes and microscopes, colours exhibited
by thin films, etc., are topics in optics.
Thermodynamics, in contrast to mechanics, does
not deal with the motion of bodies as a whole.
Rather, it deals with systems in macroscopic
equilibrium and is concerned with changes in
internal energy, temperature, entropy, etc., of the
system through external work and transfer of
heat.  The efficiency of heat engines and
refrigerators, the direction of a physical or

You can now see that the scope of physics is

truly vast.  It covers a tremendous range of

magnitude of physical quantities like length,

mass, time, energy, etc.  At one end, it studies

phenomena at the very small scale of length

(10
-14 

m or even less) involving electrons, protons,

etc.; at the other end, it deals with astronomical

phenomena at the scale of galaxies or even the

entire universe whose extent is of the order of

10
26 

m.  The two length scales differ by a factor of

10
40

 or even more.  The range of time scales can

be obtained by dividing the length scales by the

speed of light : 10
–22 

s to 1018 
s.  The range of

masses goes from, say, 10–30 kg  (mass of an

electron) to 10
55 

kg (mass of known observable

universe). Terrestrial phenomena lie somewhere

in the middle of this range.

Fig. 1.1 Theory and experiment go hand in hand in physics and help each other’s progress. The alpha scattering

experiments of Rutherford gave the nuclear model of the atom.

* Recently, the domain intermediate between the macroscopic and the microscopic (the so-called mesoscopic

physics), dealing with a few tens or hundreds of atoms, has emerged as an exciting  field of  research.

phenomena*. Classical Physics deals mainly
with macroscopic phenomena and includes
subjects like Mechanics, Electrodynamics,
Optics and Thermodynamics. Mechanics
founded on Newton’s laws of motion and the law
of gravitation is concerned with the motion (or
equilibrium) of particles, rigid and deformable
bodies, and general systems of particles.  The
propulsion of a rocket by a jet of ejecting gases,
propagation of water waves or sound waves in
air, the equilibrium of a bent rod under a load,
etc., are problems of mechanics.  Electrodynamics
deals with electric and magnetic phenomena
associated with charged and magnetic bodies.
Its basic laws were given by Coulomb, Oersted,

chemical process, etc., are problems of interest

in thermodynamics.

The microscopic domain of physics deals  with

the constitution and structure of matter at the

minute scales of atoms and nuclei (and even

lower scales of length) and their interaction with

different probes such as electrons, photons and

other elementary particles. Classical physics is

inadequate to handle this domain and Quantum

Theory is currently accepted as the proper

framework for explaining microscopic

phenomena.  Overall, the edifice of physics is

beautiful and imposing and you will appreciate

it more as you pursue the subject.
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Physics is exciting in many ways. To some people
the excitement comes from the elegance and
universality of its basic theories, from the fact that
a few basic concepts and laws can explain
phenomena covering a large range of magnitude
of physical quantities. To some others, the challenge
in carrying out imaginative new experiments to
unlock the secrets of nature, to verify or refute
theories, is thrilling.  Applied physics is equally
demanding. Application and exploitation of
physical laws to make useful devices is the most
interesting and exciting part and requires great
ingenuity and persistence of effort.

What lies behind the phenomenal progress
of physics in the last few centuries? Great
progress usually accompanies changes in our
basic perceptions.  First, it was realised that for
scientific progress, only qualitative thinking,
though no doubt important, is not enough.
Quantitative measurement is central to the
growth of science, especially physics, because
the laws of nature happen to be expressible in
precise mathematical equations. The second
most important insight was that the basic laws
of physics are universal — the same laws apply
in widely different contexts. Lastly, the strategy
of approximation turned out to be very
successful.  Most observed phenomena in daily
life are rather complicated manifestations of the
basic laws. Scientists recognised the importance
of extracting the essential features of a
phenomenon from its less significant aspects.
It is not practical to take into account all the
complexities of a phenomenon in one go.  A good
strategy is to focus first on the essential features,
discover the basic principles and then introduce
corrections to build a more refined theory of the
phenomenon. For example, a stone and a feather
dropped from the same height do not reach the
ground at the same time. The reason is that the
essential aspect of the phenomenon, namely free
fall under gravity, is complicated by the
presence of air resistance. To get the law of free
fall under gravity, it is better to create a
situation wherein the air resistance is
negligible. We can, for example, let the stone and
the feather fall through a long evacuated tube.
In that case, the two objects will fall almost at
the same rate, giving the basic law that
acceleration due to gravity is independent of the
mass of the object.  With the basic law thus
found, we can go back to the feather, introduce
corrections due to air resistance, modify the
existing theory and try to build a more realistic

Hypothesis, axioms and models

One should not think that everything can be proved
with physics and mathematics. All physics, and also
mathematics, is based on assumptions, each of
which is variously called a hypothesis or axiom or
postulate, etc.

For example, the universal law of gravitation
proposed by Newton is an assumption or hypothesis,
which he proposed out of his ingenuity. Before him,
there were several observations, experiments and
data, on the motion of planets around the sun,
motion of the moon around the earth, pendulums,
bodies falling towards the earth etc. Each of these
required a separate explanation, which was more
or less qualitative. What the universal law of
gravitation says is that, if we assume that any two
bodies in the universe attract each other with a
force proportional to the product of their masses
and inversely proportional to the square of the
distance between them, then we can explain all
these observations in one stroke. It not only explains
these phenomena, it also allows us to predict the
results of future experiments.

A hypothesis is a supposition without assuming
that it is true. It would not be fair to ask anybody
to prove the universal law of gravitation, because
it cannot be proved. It can be verified and
substantiated by experiments and observations.

An axiom is a self-evident truth while a model
is a theory proposed to explain observed
phenomena. But you need not worry at this stage
about the nuances in using these words. For
example, next year you will learn about Bohr’s model
of hydrogen atom, in which Bohr assumed that an
electron in the hydrogen atom follows certain rules
(postutates). Why did he do that? There was a large
amount of spectroscopic data before him which no
other theory could explain. So Bohr said that if we
assume that an atom behaves in such a manner,
we can explain all these things at once.

Einstein’s special theory of relativity is also
based on two postulates, the constancy of the speed
of electromagnetic radiation and the validity of
physical laws in all inertial frame of reference. It
would not be wise to ask somebody to prove that
the speed of light in vacuum is constant,
independent of the source or observer.

In mathematics too, we need axioms and
hypotheses at every stage. Euclid’s statement that
parallel lines never meet, is a hypothesis. This means
that if we assume this statement, we can explain
several properties of straight lines and two or three
dimensional figures made out of them. But if you
don’t assume it, you are free to use a different axiom
and get a new geometry, as has indeed happened in
the past few centuries and decades.

2018-19



PHYSICAL WORLD 5

Table 1.1 Some physicists from different countries of the world and their major contributions

theory of objects falling to the earth under
gravity.

1.3  PHYSICS, TECHNOLOGY AND SOCIETY

The connection between physics, technology
and society can be seen in many examples. The
discipline of thermodynamics arose from the
need to understand and improve the working of
heat engines.  The steam engine, as we know,
is inseparable from the Industrial Revolution in
England in the eighteenth century, which had
great impact on the course of human
civilisation. Sometimes technology gives rise to
new physics; at other times physics generates
new technology. An example of the latter is the
wireless communication technology that followed
the discovery of the basic laws of electricity and
magnetism in the nineteenth century. The
applications of  physics are not always easy to
foresee. As late as 1933, the great physicist
Ernest Rutherford had dismissed the possibility
of tapping energy from atoms. But only a few
years later, in 1938, Hahn and Meitner
discovered the phenomenon of neutron-induced
fission of uranium, which would serve as the
basis of nuclear power reactors and nuclear
weapons. Yet another important example of
physics giving rise to technology is the silicon
‘chip’ that triggered  the computer revolution in
the last three decades of the twentieth century.

A most significant area to which physics has
and will contribute is the development of
alternative energy resources.  The fossil fuels of
the planet are dwindling fast and there is an
urgent need to discover new and affordable
sources of energy.  Considerable progress has
already been made in this direction (for
example, in conversion of solar energy,
geothermal energy, etc., into electricity), but
much more is still to be accomplished.

Table1.1 lists some of the great physicists,
their major contribution and the country of
origin. You will appreciate from this table the
multi-cultural, international character of the
scientific endeavour. Table 1.2 lists some
important technologies and the principles of
physics  they  are  based on.  Obviously,  these
tables are not exhaustive. We urge you to try to
add many names and items to these tables with
the help of your teachers, good books and
websites on science.  You will find that this
exercise is very educative and also great fun.
And, assuredly, it will never end.  The progress
of science is unstoppable!

Physics is the study of nature and natural
phenomena. Physicists try to discover the rules
that are operating in nature, on the basis of
observations, experimentation and analysis.
Physics deals with certain basic rules/laws
governing the natural world. What is the nature

Name Major contribution/discovery Country of
Origin

Archimedes Principle of buoyancy; Principle of the lever Greece

Galileo Galilei Law of inertia Italy

Christiaan Huygens Wave theory of light Holland

Isaac Newton Universal law of gravitation; Laws of motion; U.K.
Reflecting telescope

Michael Faraday Laws of electromagnetic induction U.K.

James Clerk Maxwell Electromagnetic theory; Light-an U.K.
electromagnetic wave

Heinrich Rudolf Hertz Generation of electromagnetic waves Germany

J.C. Bose Ultra  short radio waves India

W.K. Roentgen X-rays Germany

J.J. Thomson Electron U.K.

Marie Sklodowska Curie Discovery of radium and polonium; Studies on Poland
natural radioactivity

Albert Einstein Explanation of photoelectric effect; Germany

Theory of relativity
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* Sections 1.4 and 1.5 contain several ideas that you may not grasp fully in your first reading. However, we

advise you to read them carefully to develop a feel for some basic aspects of  physics. These are some of the

areas which continue to occupy the physicists today.

of physical laws? We shall now discuss the
nature of fundamental forces and the laws that
govern the diverse phenomena of the physical
world.

1.4  FUNDAMENTAL FORCES IN NATURE*

We all have an intuitive notion of force. In our
experience, force is needed to push, carry or
throw objects, deform or break them.  We also
experience the impact of forces on us, like when
a moving object hits us or we are in a merry-go-
round. Going from this intuitive notion to the
proper scientific concept of force is not a trivial
matter. Early thinkers like Aristotle had wrong

ideas about it.  The correct notion of force was
arrived at by Isaac Newton in his famous laws of
motion. He also gave an explicit form for the force
for gravitational attraction between two bodies.
We shall learn these matters in subsequent
chapters.

In the macroscopic world, besides the
gravitational force, we encounter several kinds
of forces: muscular force, contact forces between
bodies, friction (which is also a contact force
parallel to the surfaces in contact), the forces
exerted by compressed or elongated springs and
taut strings and ropes (tension), the force of
buoyancy and viscous force when solids are in

Victor Francis Hess Cosmic radiation Austria

R.A. Millikan Measurement of electronic charge U.S.A.

Ernest Rutherford Nuclear model of atom New Zealand

Niels Bohr Quantum model of hydrogen atom Denmark

C.V. Raman Inelastic scattering of light by molecules India

Louis Victor de Borglie Wave nature of matter France

M.N. Saha Thermal ionisation India

S.N. Bose Quantum statistics India

Wolfgang Pauli Exclusion principle Austria

Enrico Fermi Controlled nuclear fission Italy

Werner Heisenberg Quantum mechanics; Uncertainty principle Germany

Paul Dirac Relativistic theory of electron; U.K.
Quantum statistics

Edwin Hubble Expanding universe U.S.A.

Ernest Orlando Lawrence Cyclotron U.S.A.

James Chadwick Neutron U.K.

Hideki Yukawa Theory of nuclear forces Japan

Homi Jehangir Bhabha Cascade process of cosmic radiation India

Lev Davidovich Landau Theory of condensed matter; Liquid helium Russia

S. Chandrasekhar Chandrasekhar limit, structure and evolution India
of stars

John Bardeen Transistors; Theory of super conductivity U.S.A.

C.H. Townes Maser; Laser U.S.A.

Abdus Salam Unification of weak and electromagnetic Pakistan
interactions

Name Major contribution/discovery Country of
Origin
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contact with fluids, the force due to pressure of
a fluid, the force due to surface tension of a liquid,
and so on. There are also forces involving charged
and magnetic bodies. In the microscopic domain
again, we have electric and magnetic forces,
nuclear forces involving protons and neutrons,
interatomic and intermolecular forces, etc.  We
shall get familiar with some of these forces in later
parts of this course.

A great insight of the twentieth century
physics is that these different forces occurring
in different contexts actually arise from only a
small number of fundamental forces in nature.
For example, the elastic spring force arises due

to the net attraction/repulsion between the
neighbouring atoms of the spring when the
spring is elongated/compressed. This net

attraction/repulsion can be traced to the
(unbalanced) sum of electric forces between the
charged constituents of the atoms.

In principle, this means that the laws for
‘derived’ forces (such as spring force, friction)
are not independent of the laws of fundamental
forces in nature. The  origin of these derived
forces is, however, very complex.

At the present stage of our understanding,
we know of four fundamental forces in nature,
which are described in brief here :

 Table 1.2  Link between technology and physics

Technology Scientific principle(s)

Steam engine Laws of thermodynamics

Nuclear reactor Controlled nuclear fission

Radio and Television Generation, propagation and detection

of electromagnetic waves

Computers Digital logic

Lasers Light amplification by stimulated emission of
radiation

Production of ultra high magnetic Superconductivity
fields

Rocket propulsion Newton’s laws of motion

Electric generator Faraday’s laws of electromagnetic induction

Hydroelectric power Conversion of gravitational potential energy into
electrical energy

Aeroplane Bernoulli’s principle in fluid dynamics

Particle accelerators Motion of charged particles in electromagnetic
fields

Sonar Reflection of ultrasonic waves

Optical fibres Total internal reflection of light

Non-reflecting coatings Thin film optical interference

Electron microscope Wave nature of electrons

Photocell Photoelectric effect

Fusion test reactor (Tokamak) Magnetic confinement of plasma

Giant Metrewave Radio Detection of cosmic radio waves
Telescope (GMRT)

Bose-Einstein condensate Trapping and cooling of atoms by laser beams and
magnetic fields.
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1.4.1 Gravitational Force

The gravitational force is the force of mutual
attraction between any two objects by virtue of
their masses. It is a universal force. Every object
experiences this force due to every other object
in the universe. All objects on the earth, for
example, experience the force of gravity due to
the earth. In particular, gravity governs the
motion of the moon and artificial satellites around
the earth, motion of the earth and planets
around the sun, and, of course, the motion of
bodies falling to the earth.  It plays a key role in
the large-scale phenomena of the universe, such
as formation and evolution of stars, galaxies and
galactic clusters.

1.4.2  Electromagnetic Force

Electromagnetic force is the force between
charged particles.  In the simpler case when
charges are at rest, the force is given by
Coulomb’s law : attractive for unlike charges and
repulsive for like charges. Charges in motion
produce magnetic effects and a magnetic field
gives rise to a force on a moving charge. Electric
and magnetic effects are, in general,
inseparable – hence the name electromagnetic
force. Like the gravitational force,
electromagnetic force acts over large distances
and does not need any intervening medium. It
is enormously strong compared to gravity. The

electric force between two protons, for example,

is 10
36

 times the gravitational force between

them, for any fixed distance.

Matter, as we know, consists of elementary

charged constituents like electrons and

protons. Since the electromagnetic force is so

much stronger than the gravitational force, it

dominates all phenomena at atomic and

molecular scales.  (The other two forces, as we

shall see, operate only at nuclear scales.)  Thus

it is mainly the electromagnetic force that

governs the structure of atoms and molecules,

the dynamics of  chemical reactions and the

mechanical, thermal and other properties of

materials.  It underlies the macroscopic forces

like  ‘tension’, ‘friction’, ‘normal force’, ‘spring

force’, etc.

Gravity is always attractive, while

electromagnetic force can be attractive or

repulsive.  Another way of putting it is that mass

comes only in one variety (there is no negative

mass), but charge comes in two varieties :

positive and negative charge. This is what

makes all the difference.  Matter is mostly

electrically neutral (net charge is zero). Thus,

electric force is largely zero and gravitational

force dominates terrestrial phenomena. Electric

force manifests itself in atmosphere where the

atoms are ionised and that leads to lightning.

Albert Einstein (1879-1955)

Albert Einstein, born in Ulm, Germany in 1879, is universally regarded as
one of the greatest physicists of all time. His astonishing scientific career
began with the publication of three path-breaking papers in 1905.  In the
first paper, he introduced the notion of light quanta (now called photons)
and used it to explain the features of photoelectric effect that the classical
wave theory of radiation could not account for.  In the second paper, he
developed a theory of Brownian motion that was confirmed experimentally
a few years later and provided a convincing evidence of the atomic picture of
matter. The third paper gave birth to the special theory of relativity that

made Einstein a legend in his own life time.  In the next decade, he explored the consequences of his
new theory which included, among other things, the mass-energy equivalence enshrined in his famous
equation E = mc2.  He also created the general version of relativity (The General Theory of Relativity),
which is the modern theory of gravitation. Some of Einstein’s most significant later contributions are:
the notion of stimulated emission introduced in an alternative derivation of Planck’s blackbody radiation
law, static model of the universe which started modern cosmology, quantum statistics of a gas of
massive bosons, and a critical analysis of the foundations of quantum mechanics. The year 2005 was
declared as International Year of  Physics, in recognition of  Einstein’s monumental contribution to
physics, in year 1905, describing revolutionary scientific ideas that have since influenced all of modern
physics.
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If we reflect a little, the enormous strength
of the electromagnetic force compared to
gravity is evident in our daily life.  When we
hold a book in our hand, we are balancing the
gravitational force on the book due to the huge
mass of the earth by the ‘normal force’
provided by our hand.  The latter is nothing
but the net electromagnetic force between the
charged constituents of our hand and
the book, at the surface in contact. If
electromagnetic force were not intrinsically so
much stronger than gravity, the hand of the
strongest man would crumble under the
weight of a feather ! Indeed, to be consistent,
in that circumstance, we ourselves would
crumble under our own weight !

1.4.3  Strong Nuclear Force

The strong nuclear force binds protons and
neutrons in a nucleus. It is evident that without
some attractive force, a nucleus will be
unstable due to the electric repulsion between
its protons. This attractive force cannot be
gravitational since force of gravity is negligible
compared to the electric force. A new basic force
must, therefore, be  invoked. The strong nuclear
force  is  the strongest of all fundamental forces,
about 100 times the electromagnetic force in

strength.  It is charge-independent and acts
equally between a proton and a proton, a
neutron and a neutron, and a proton and a
neutron. Its range is, however, extremely small,
of about nuclear dimensions (10

–15
m). It is

responsible for the stability of nuclei. The
electron, it must be noted, does not experience
this force.

Recent developments have, however,
indicated that protons and neutrons are built
out of still more elementary constituents called
quarks.

1.4.4  Weak Nuclear Force

The weak nuclear force appears only in certain

nuclear processes such as the β-decay of a

nucleus. In β-decay, the nucleus emits an

electron and an uncharged particle called

neutrino.  The weak nuclear force is not as weak

as the gravitational force, but much weaker

than the strong nuclear and electromagnetic

forces. The range of weak nuclear force is

exceedingly small, of the order of 10–16 m.

1.4.5  Towards Unification of  Forces

We remarked in section 1.1 that unification is a
basic quest in physics. Great advances in
physics often amount to unification of different

Satyendranath Bose (1894-1974)

Satyendranath Bose, born in Calcutta in 1894, is among the great Indian
physicists who made a fundamental contribution to the advance of science
in the twentieth century. An outstanding student throughout, Bose started
his career in 1916 as a lecturer in physics in Calcutta University; five years
later he joined Dacca University.  Here in 1924, in a brilliant flash of insight,
Bose gave a new derivation of Planck’s law, treating radiation as a gas of
photons and employing new statistical methods of counting of photon states.
He wrote a short paper on the subject and sent it to Einstein who
immediately recognised its great significance, translated it in German and
forwarded it for publication.  Einstein then applied the same method to a

gas of molecules.
The key new conceptual ingredient in Bose’s work was that the particles were regarded as

indistinguishable, a radical departure from the assumption that underlies the classical Maxwell-
Boltzmann statistics. It was soon realised that the new Bose-Einstein statistics was applicable to
particles with integers spins, and a new quantum statistics (Fermi-Dirac statistics) was needed for
particles with half integers spins satisfying Pauli’s exclusion principle. Particles with integers spins
are now known as bosons in honour of Bose.

An important consequence of Bose-Einstein statistics is that a gas of molecules below a certain
temperature will undergo a phase transition to a state where a large fraction of atoms populate the
same lowest energy state. Some seventy years were to pass before the pioneering ideas of Bose, developed
further by Einstein, were dramatically confirmed in the observation of a new state of matter in a dilute
gas of ultra cold alkali atoms - the Bose-Eintein  condensate.
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theories and domains. Newton unified terrestrial
and celestial domains under a common law of
gravitation.  The experimental discoveries of
Oersted and Faraday showed that electric and
magnetic phenomena are in general
inseparable.  Maxwell unified electromagnetism
and optics with the discovery that light is an
electromagnetic wave.  Einstein attempted to
unify gravity and electromagnetism but could
not succeed in this venture. But this did not
deter physicists from zealously pursuing the
goal of unification of forces.

Recent decades have seen much progress on
this front.  The electromagnetic and the weak
nuclear force have now been unified and are
seen as aspects of a single ‘electro-weak’ force.
What this unification actually means cannot
be explained here. Attempts have been (and are
being) made to unify the electro-weak and the
strong force and even to unify the gravitational
force with the rest of the fundamental forces.
Many of these ideas are still speculative and
inconclusive. Table 1.4 summarises some of the
milestones in the progress towards unification
of forces in nature.

1.5   NATURE OF PHYSICAL LAWS

Physicists explore the universe. Their
investigations, based on scientific processes,
range from particles that are smaller than
atoms in size to stars that are very far away. In
addition to finding the facts by observation and
experimentation, physicists attempt to discover
the laws that summarise (often as mathematical
equations) these facts.

In any physical phenomenon governed by
different forces, several quantities may change
with time. A remarkable fact is that some special
physical quantities, however, remain constant
in time. They are the conserved quantities of
nature. Understanding these conservation
principles is very important to describe the
observed phenomena quantitatively.

For motion under an external conservative
force, the total mechanical energy i.e. the sum
of kinetic and potential energy of a body is a
constant. The familiar example is the free fall of
an object under gravity. Both the kinetic energy
of the object and its potential energy change
continuously with time, but the sum remains
fixed. If the object is released from rest, the initial

Table 1.4  Progress in unification of different forces/domains in nature

Table 1.3  Fundamental  forces  of  nature

Name Relative Range Operates among
strength

Gravitational force 10–39 Infinite All objects in the universe

Weak nuclear force 10–13 Very short, Sub-nuclear Some elementary particles,
size (∼10–16m) particularly electron and

neutrino

Electromagnetic force 10–2 Infinite Charged particles

Strong nuclear force 1 Short, nuclear Nucleons, heavier
size (∼10–15m) elementary particles

2018-19



PHYSICAL WORLD 11

potential energy is completely converted into the
kinetic energy of the object just before it hits
the ground. This law restricted for a conservative
force should not be confused with the general
law of conservation of energy of an isolated
system (which is the basis of the First Law of
Thermodynamics).

The concept of energy is central to physics
and the expressions for energy can be written
for every physical system. When all forms of
energy e.g., heat, mechanical energy, electrical
energy etc., are counted, it turns out that energy
is conserved. The general law of conservation of
energy is true for all forces and for any kind of
transformation between different forms of
energy. In the falling object example, if you
include the effect of air resistance during the
fall and see the situation after the object hits
the ground and stays there, the total
mechanical energy is obviously not conserved.
The general law of energy conservation, however,
is still applicable.  The initial potential energy
of the stone gets transformed into other forms
of energy : heat and sound. (Ultimately, sound
after it is absorbed becomes heat.) The total
energy of the system (stone plus the
surroundings) remains unchanged.

The law of conservation of energy is thought
to be valid across all domains of nature, from
the microscopic to the macroscopic. It is
routinely applied in the analysis of atomic,
nuclear and elementary particle processes.  At

the other end, all kinds of violent phenomena
occur in the universe all the time.  Yet the total
energy of the universe (the most ideal isolated
system possible !) is believed to remain
unchanged.

Until the advent of Einstein’s theory of
relativity, the law of conservation of mass was
regarded as another basic conservation law of
nature, since matter was thought to be
indestructible. It was (and still is) an important
principle used, for example, in the analysis of
chemical reactions. A chemical reaction is
basically a rearrangement of atoms among
different molecules.  If the total binding energy
of the reacting molecules is less than the total
binding energy of the product molecules, the
difference appears as heat and the reaction is
exothermic.  The opposite is true for energy
absorbing (endothermic) reactions.  However,
since the atoms are merely rearranged but not
destroyed, the total mass of the reactants is the
same as the total mass of the products in a
chemical reaction. The changes in the binding
energy are too small to be measured as changes
in mass.

According to Einstein’s theory, mass m is
equivalent to energy E given by the relation
E = mc

2
, where c is speed of light in vacuum.

In a nuclear process mass gets converted to
energy (or vice-versa). This is the energy which
is released in a nuclear power generation and

nuclear explosions.

Sir C.V. Raman (1888-1970)

Chandrashekhara Venkata Raman  was born on 07 Nov 1888 in Thiruvanaikkaval.
He finished his schooling by the age of eleven. He graduated from Presidency
College, Madras. After finishing his education he joined financial services of the
Indian Government.

While in Kolkata, he started working on his area of interest at Indian Asso-
ciation for Cultivation of Science founded  by Dr. Mahendra Lal Sirkar, during his
evening hours. His area of interest included vibrations, variety of musical instru-
ments, ultrasonics, diffraction and so on.

In 1917 he was offered Professorship at Calcutta University. In 1924 he was
elected ‘Fellow’ of the Royal Society of London and received Nobel prize in Physics
in 1930 for his discovery, now known as Raman Effect.

The Raman Effect deals with scattering of light by molecules of a medium
when they are excited to vibrational energy levels. This work opened totally new
avenues for research for years to come.

He spent his later years at Bangalore, first at Indian Institute of Science and then at Raman Re-
search Institute. His work has inspired generation of young students.
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Energy is a scalar quantity.  But all conserved

quantities are not necessarily scalars.  The total

linear momentum and the total angular

momentum (both vectors) of an isolated system

are also conserved quantities.  These laws can

be derived from Newton’s laws of motion in

mechanics.  But their validity goes beyond

mechanics.  They are the basic conservation

laws of nature in all domains, even in those

where Newton’s laws may not be valid.

Besides their great simplicity and generality,

the conservation laws of nature are very useful

in practice too.  It often happens that we cannot

solve the full dynamics of a complex problem

involving different particles and forces. The

conservation laws can still provide useful

results.  For example, we may not know the

complicated forces that act during a collision

of two automobiles; yet momentum

conservation law enables us to bypass the

complications and predict or rule out possible

outcomes of the collision. In nuclear and

elementary particle phenomena also, the

conservation laws are important tools of

analysis.  Indeed, using the conservation laws

of energy and momentum for β-decay, Wolfgang

Pauli (1900-1958) correctly predicted in 1931

the existence of a new particle (now called

neutrino) emitted in β-decay along with the

electron.

Conservation laws have a deep connection

with symmetries of nature that you will explore

in more advanced courses in physics.  For

example, an important observation is that the

laws of nature do not change with time!  If you

perform an experiment in your laboratory today

and repeat the same experiment (on the same

objects under identical conditions) after a year,

the results are bound to be the same.  It turns

out that this symmetry of nature with respect to

translation (i.e. displacement) in time is

equivalent to the law of conservation of energy.

Likewise, space is homogeneous and there is no

(intrinsically) preferred location in the universe.

To put it more clearly, the laws of nature are the

same everywhere in the universe. (Caution : the

phenomena may differ from place to place

because of differing conditions at different

locations. For example, the acceleration due to

gravity at the moon is one-sixth that at the earth,

but the law of gravitation is the same both on

the moon and the earth.)  This symmetry of the

laws of nature with respect to translation in

space gives rise to conservation of linear

momentum.  In the same way isotropy of space

(no intrinsically preferred direction in space)

underlies the law of conservation of angular

momentum*. The conservation laws of charge and

other attributes of elementary particles can also

be related to certain abstract symmetries.

Symmetries of space and time and other abstract

symmetries play a central role in modern theories

of fundamental forces in nature.

* See Chapter 7

Conservation laws in physics

Conservation of energy, momentum, angular
momentum, charge, etc are considered to be
fundamental laws in physics. At this moment,
there are many such conservation laws. Apart from
the above four, there are others which mostly deal
with quantities which have been introduced in
nuclear and particle physics. Some of the
conserved quantities are called spin, baryon
number, strangeness, hypercharge, etc, but you
need not worry about them.

A conservation law is a hypothesis, based on
observations and experiments. It is important to
remember that a conservation law cannot be
proved. It can be verified, or disproved, by
experiments. An experiment whose result is  in
conformity with the law verifies or substantiates
the law; it does not prove the law. On the other
hand, a single experiment whose result goes
against the law is enough to disprove it.

It would be wrong to ask somebody to prove
the law of conservation of energy. This law is an
outcome of our experience over several centuries,
and it has been found to be valid in all
experiments, in mechanics, thermodynamics,
electromagnetism, optics, atomic and nuclear
physics, or any other area.

Some students feel that they can prove the
conservation of mechanical energy from a body
falling under gravity, by adding the kinetic and
potential energies at a point and showing that it
turns out to be constant. As pointed out above,
this is only a verification of the law, not its proof.
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SUMMARY

1. Physics deals with the study of the basic laws of nature and their manifestation in
different phenomena. The basic laws of physics are universal and apply in widely different
contexts and conditions.

2. The scope of physics is wide, covering a tremendous range of magnitude of physical
quantities.

3. Physics and technology are related to each other.  Sometimes technology gives rise to
new physics; at other times physics generates new technology.  Both have direct impact
on society.

4. There are four fundamental forces in nature that govern the diverse phenomena of the
macroscopic and the microscopic world. These are the ‘gravitational force’, the
‘electromagnetic force’, the ‘strong nuclear force’, and the ‘weak nuclear force’.  Unification
of different forces/domains in nature is a basic quest in physics.

5. The physical quantities that remain unchanged in a process are called conserved
quantities. Some of the general conservation laws in nature include the laws of
conservation of mass, energy, linear momentum, angular momentum, charge, parity,
etc.  Some conservation laws are true for one fundamental force but not for the other.

6. Conservation laws have a deep connection with symmetries of nature.  Symmetries of
space and time, and other types of symmetries play a central role in modern theories of
fundamental forces in nature.

EXERCISES

Note for the student

The exercises given here are meant to enhance your awareness about the issues surrounding
science, technology and society and to encourage you to think and formulate your views
about them.  The questions may not have clear-cut ‘objective’ answers.

Note for the teacher

The exercises given here are not  for the purpose of a formal examination.

1.1 Some of the most profound statements on the nature of science have come from
Albert Einstein, one of the greatest scientists of all time.  What do you think did
Einstein mean when he said :  “The most incomprehensible thing about the world is
that it is comprehensible”?

1.2 “Every great physical theory starts as a heresy and ends as a dogma”. Give some
examples from the history of science of the validity of this incisive remark.

1.3 “Politics is the art of the possible”. Similarly, “Science is the art of the soluble”.
Explain this beautiful aphorism on the nature and practice of science.

1.4 Though India now has a large base in science and technology, which is fast expanding,
it is still a long way from realising its potential of becoming a world leader in science.
Name some important factors, which in your view have hindered the advancement of
science in India.

1.5 No physicist has ever “seen” an electron.  Yet, all physicists believe in the existence of
electrons.  An intelligent but superstitious man advances this analogy to argue that
‘ghosts’ exist even though no one has ‘seen’ one.  How will you refute his argument ?

1.6 The shells of crabs found around a particular coastal location in Japan seem mostly
to resemble the legendary face of a Samurai.  Given below are two explanations of this
observed fact.  Which of these strikes you as a scientific explanation ?

(a) A tragic sea accident several centuries ago drowned a young Samurai. As a tribute
to his bravery, nature through its inscrutable ways immortalised his face by
imprinting it on the crab shells in that area.
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(b) After the sea tragedy, fishermen in that  area, in a gesture of honour to their
dead hero, let free any crab shell caught by them which accidentally had a shape
resembling the face of a Samurai.  Consequently, the particular shape  of the
crab shell survived longer and therefore in course of time the shape was genetically
propagated.  This is an example of evolution by artificial selection.

[Note : This interesting illustration taken from Carl Sagan’s ‘The Cosmos’ highlights
the fact that often strange and inexplicable facts which on the first sight appear
‘supernatural’ actually turn out to have simple scientific explanations. Try to think
out other examples of this kind].

1.7 The industrial revolution in England and Western Europe more than two centuries
ago was triggered by some key scientific and technological advances.  What were these
advances ?

1.8 It is often said that the world is witnessing now a second industrial revolution, which
will transform the society as radically as did the first. List some key contemporary areas
of science and technology, which are responsible for this revolution.

1.9 Write in about 1000 words a fiction piece based on your speculation on the science
and technology of the twenty-second century.

1.10 Attempt to formulate your ‘moral’ views on the practice of science.  Imagine yourself
stumbling upon a discovery, which has great academic interest but is certain to have
nothing but dangerous consequences for the human society.  How, if at all, will you
resolve your dilemma ?

1.11 Science, like any knowledge, can be put to good or bad use, depending on the user.
Given below are some of the applications of science.  Formulate your views on whether
the particular application is good, bad or something that cannot be so clearly
categorised :
(a) Mass vaccination against small pox to curb and finally eradicate this disease

from the population. (This has already been successfully done in India).
(b) Television for eradication of illiteracy and for mass communication of news and

ideas.
(c) Prenatal sex determination
(d) Computers for increase in work efficiency
(e) Putting artificial satellites into orbits  around the Earth
(f ) Development of nuclear weapons
(g) Development of new and powerful techniques of chemical and biological warfare).
(h) Purification of water for drinking
(i) Plastic surgery
(j ) Cloning

1.12 India has had a long and unbroken tradition of great scholarship — in mathematics,
astronomy, linguistics, logic and ethics.  Yet, in parallel with this, several superstitious
and obscurantistic  attitudes and practices flourished in our society and unfortunately
continue even today — among many educated people too. How will you use your
knowledge of science to develop strategies to counter these attitudes ?

1.13 Though the law gives women equal status in India, many people hold unscientific
views on a woman’s innate nature, capacity and intelligence, and in practice give
them a secondary status and role. Demolish this view using scientific arguments, and
by quoting examples of great women in science and other spheres; and persuade yourself
and others that, given equal opportunity, women are on par with men.

1.14 “It is more important to have beauty in the equations of physics than to have them
agree with experiments”. The great British physicist P. A. M. Dirac held this view.
Criticize this statement.  Look out for some equations and results in this book which
strike you as beautiful.

1.15 Though the statement quoted above may be disputed, most physicists do have a feeling
that the great laws of physics are at once simple and beautiful. Some of the notable
physicists, besides Dirac, who have articulated this feeling, are : Einstein, Bohr,
Heisenberg, Chandrasekhar and Feynman. You are urged to make special efforts to get
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access to the general books and writings by these and other great masters of physics.
(See the Bibliography at the end of this book.) Their writings are truly inspiring !

1.16 Textbooks on science may give you a wrong impression that studying science is dry
and all too serious and that scientists are absent-minded introverts who never laugh
or grin.  This image of science and scientists is patently false. Scientists, like any
other group of humans, have their share of humorists, and many have led their lives
with a great sense of fun and adventure, even as they seriously pursued their scientific
work. Two great physicists of this genre are Gamow and Feynman. You will enjoy
reading their books listed in the Bibliography.
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CHAPTER TWO

UNITS AND MEASUREMENT

2.1  INTRODUCTION

Measurement of any physical quantity involves comparison
with a certain basic, arbitrarily chosen, internationally
accepted reference standard called unit. The result of a
measurement of a physical quantity is expressed by a
number (or numerical measure) accompanied by a unit.
Although the number of physical quantities appears to be
very large, we need only a limited number of units for
expressing all the physical quantities, since they are inter-
related with one another. The units for the fundamental or
base quantities are called fundamental or base units. The
units of all other physical quantities can be expressed as
combinations of the base units. Such units obtained for the
derived quantities are called derived units. A complete set
of these units, both the base units and derived units, is
known as the system of units.

2.2  THE INTERNATIONAL SYSTEM OF UNITS

In earlier time scientists of different countries were using
different systems of units for measurement. Three such
systems, the CGS, the FPS (or British) system and the MKS
system were in use extensively till recently.

The base units for length, mass and time in these systems
were as follows :
• In CGS system they were centimetre, gram and second

respectively.
• In FPS system they were foot, pound and second

respectively.
• In MKS system they were metre, kilogram and second

respectively.
The system of units which is at present internationally

accepted for measurement is the Système Internationale

d’ Unites (French for International System of Units),
abbreviated as SI. The SI, with standard scheme of symbols,
units and abbreviations, was developed and recommended
by General Conference on Weights and Measures in 1971 for

2.1 Introduction

2.2 The international system of
units

2.3 Measurement of length

2.4 Measurement of mass

2.5 Measurement of time

2.6 Accuracy, precision of
instruments and errors in
measurement

2.7 Significant figures

2.8 Dimensions of physical
quantities

2.9 Dimensional formulae and
dimensional equations

2.10 Dimensional analysis and its
applications

Summary
Exercises
Additional exercises
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international usage in scientific, technical,
industrial and commercial work.  Because SI
units used decimal system, conversions within
the system are quite simple and convenient.  We
shall follow the SI units in this book.

In SI, there are seven base units as given in
Table 2.1. Besides the seven base units, there
are two more units that are defined for (a) plane
angle dθ as the ratio of length of arc ds to the
radius r and (b) solid angle dΩ as the ratio of
the intercepted area dA of the spherical surface,
described about the apex O as the centre, to
the square of its radius r, as shown in Fig. 2.1(a)
and (b) respectively.  The unit for plane angle is
radian with the symbol rad and the unit for the
solid angle is steradian with the symbol sr. Both
these are dimensionless quantities.

Table 2.1   SI Base Quantities  and  Units*

UNITS AND MEASUREMENT 17

* The values mentioned here need not be remembered or asked in a test. They are given here only to  indicate the

extent of accuracy to which they are measured. With progress in technology, the measuring techniques get

improved leading to measurements with greater precision. The definitions of base units are revised to keep up

with this progress.

(a)

(b)
Fig. 2.1 Description of (a) plane angle dθ and

(b) solid angle dΩ .

Base SI Units

quantity Name Symbol Definition

Length metre m The metre is the length of the path travelled by light in vacuum
during a time interval of 1/299,792,458 of a second. (1983)

Mass kilogram kg The kilogram is equal to the mass of the international prototype
of the kilogram (a platinum-iridium alloy cylinder) kept at
international Bureau of Weights and Measures, at Sevres, near
Paris, France. (1889)

Time second s The second is the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atom.
(1967)

Electric ampere A The ampere is that constant current which, if maintained in
current two straight parallel conductors of infinite length, of negligible

circular cross-section, and placed 1 metre apart in vacuum,
would produce between these conductors a force equal to 2×10–7

newton per metre of length. (1948)

Thermo kelvin K The kelvin, is the fraction 1/273.16 of the thermodynamic
dynamic temperature of the triple point of water. (1967)
Temperature

Amount of mole mol The mole is the amount of substance of a system, which contains
substance as many elementary entities as there are atoms in 0.012

kilogram of carbon - 12. (1971)

Luminous candela cd The candela is the luminous intensity, in a given
intensity direction, of a source that emits monochromatic radiation of

frequency 540×1012 hertz and that has a radiant intensity in
that direction of 1/683 watt per steradian. (1979)

2018-19



PHYSICS18

Table 2.2   Some units retained for general use (Though outside SI)

Note that when mole is used, the elementary
entities  must  be specified.  These  entities
may be atoms, molecules, ions, electrons,
other particles or specified groups of such
particles.

We employ units  for  some  physical quantities
that can be derived from the seven base units
(Appendix A 6). Some derived units in terms of
the SI base units are given in (Appendix A 6.1).
Some SI derived units are given special names
(Appendix A  6.2 ) and some derived SI units make
use of these units with special names and the
seven base units  (Appendix A 6.3). These are
given in Appendix A 6.2 and A 6.3 for your ready
reference. Other units retained for general use
are given in Table 2.2.

Common SI prefixes and symbols for multiples
and sub-multiples are given in Appendix A2.
General  guidelines for using symbols for physical
quantities, chemical elements and nuclides are
given in Appendix A7 and those for SI units and
some other units  are given in Appendix A8 for
your guidance and ready reference.

2.3  MEASUREMENT OF LENGTH

You are already familiar with some direct methods
for the measurement of length.  For example, a
metre scale is used for lengths from 10–3 m to 102

m.  A vernier callipers is used for lengths to an
accuracy of 10–4 m.  A screw gauge and a
spherometer can be used to measure lengths as
less as to 10–5 m. To measure lengths beyond these
ranges, we make use of some special indirect
methods.

2.3.1  Measurement of Large Distances

Large distances such as the distance of a planet
or a star from the earth cannot be measured
directly with a metre scale. An important method
in such cases is the parallax method.

When you hold a pencil in front of you against
some specific point on the background (a wall)
and look at the pencil first through your left eye
A (closing the right eye) and then look at the
pencil through your right eye B (closing the left
eye), you would notice that the position of the
pencil seems to change with respect to the point
on the wall.  This is called parallax.  The
distance between the two points of observation
is called the basis. In this example, the basis is
the distance between the eyes.

To measure the distance D of a far away
planet S by the parallax method, we observe it
from two different positions (observatories) A and
B on the  Earth,  separated  by distance AB = b
at the same time as shown in Fig. 2.2.  We
measure the angle between the two directions
along which the planet is viewed at these two
points. The ∠ASB in Fig. 2.2 represented by
symbol θ is called the parallax angle or
parallactic angle.

As the planet is very far away,  1,
b

D
<<  and

therefore, θ  is very small.  Then we
approximately take AB as an arc of length b of a
circle with centre at S and the distance D as
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t

t

t

t

the radius  AS = BS so that AB = b = D θ  where
θ  is in radians.

   D =  
b

θ
(2.1)

Having determined D, we can employ a similar
method to determine the size or angular diameter
of the planet. If d is the diameter of the planet
and α  the angular size of the planet (the angle
subtended by d at the earth), we have

α = d/D (2.2)
The angle α  can be measured from the same

location on the earth.  It is the angle between
the two directions when two diametrically
opposite  points  of the planet are viewed through
the telescope.  Since D is known, the diameter d
of the planet can be determined using Eq. (2.2).

Example 2.1  Calculate the angle of
(a) 10 (degree) (b) 1′ (minute of arc or arcmin)
and (c) 1″(second of arc or arc second) in
radians. Use 3600=2π rad, 10=60′ and
1′ = 60 ″

Answer  (a) We have 3600 = 2π rad
10 = (π /180) rad = 1.745×10–2 rad

(b) 10 = 60′ = 1.745×10–2 rad
1′ = 2.908×10–4 rad �  2.91×10–4 rad

(c) 1′ = 60″ = 2.908×10–4 rad
1″ = 4.847×10–4 rad �  4.85×10–6 rad t

Example 2.2  A man wishes to estimate
the distance of a nearby tower from him.
He stands at a point A in front of the tower
C and spots a very distant object O in line
with AC. He then walks perpendicular to
AC up to B, a distance of 100 m, and looks
at O and C again. Since O is very distant,
the direction BO is practically the same as

AO; but he finds the line of sight of C shifted
from the original line of sight by an angle θ
= 400  (θ is known as ‘parallax’) estimate
the distance of the tower C from his original
position A.

Fig. 2.3

Answer  We have, parallax angle θ  = 400

From Fig. 2.3, AB = AC tan θ
AC = AB/tanθ  = 100 m/tan 400

= 100 m/0.8391 = 119 m t

Example 2.3  The moon is observed from
two diametrically opposite points A and B
on Earth.  The angle θ  subtended at the
moon by the two directions of observation
is 1o 54′. Given the diameter of the Earth to
be about 1.276 ×××××     107 m, compute the
distance of the moon from the Earth.

Answer  We have θ  = 1° 54′ = 114′

( ) ( )-6114 60 4.85 10= ′′× × ×   rad

=  3.32 × −
10

2
rad,

since  61 4.85 10 .=" rad−×

Also  b = AB =1.276 m×107

Hence from Eq. (2.1), we have the earth-moon
distance,

D b= /θ

   =
1.276 10
3.32 10

    
7

-2

×
×

83.84 10 m= × t

Example 2.4  The Sun’s angular diameter
is measured to be 1920′′.  The distance D of
the Sun from the Earth is 1.496 × 1011 m.
What is the diameter of the Sun ?

Fig. 2.2   Parallax method.

2018-19



PHYSICS20

t

Answer   Sun’s angular diameter α
   = 1920"

   = × × −
1920 4.85 10 rad

6

   = × −9.31 10 rad3

Sun’s diameter
                     d D= α  

                        3 119.31 10 1.496 10 m   
  
  

−= × × ×

     
9=1.39 10 m× t

2.3.2 Estimation of Very Small Distances:
Size of a Molecule

To measure a very small size, like that of a
molecule (10–8 m to 10–10 m), we have to adopt
special methods. We cannot use a screw gauge
or similar instruments. Even a microscope has
certain limitations.  An optical microscope uses
visible light to ‘look’ at the system under
investigation.  As light has wave like features,
the resolution to which an optical microscope
can be used is the wavelength of light (A detailed
explanation can be found in the Class XII
Physics textbook). For visible light the range of
wavelengths  is from about 4000 Å to 7000 Å
(1 angstrom = 1 Å = 10-10 m). Hence an optical
microscope cannot resolve particles with sizes
smaller than this. Instead of visible light, we can
use an electron beam.  Electron beams can be
focussed by properly designed electric and
magnetic fields. The resolution of such an
electron microscope is limited finally by the fact
that electrons can also behave as waves ! (You
will learn more about this in class XII). The
wavelength of an electron can be as small as a
fraction of an angstrom.  Such electron
microscopes with a resolution of 0.6 Å have been
built. They can almost resolve atoms and
molecules in a material. In recent times,
tunnelling microscopy has been developed in
which again the limit of resolution is better than
an angstrom. It is possible to estimate the sizes
of molecules.

A simple method for estimating the molecular
size of oleic acid is given below. Oleic acid is a
soapy liquid with large molecular size of the
order of 10–9 m.

The idea is to first form mono-molecular layer
of oleic acid on water surface.

We dissolve 1 cm3 of oleic acid in alcohol to
make a solution of 20 cm3. Then we take 1 cm3

of this solution and dilute it to 20 cm3, using
alcohol. So, the concentration of the solution is

equal to 
1

20 20
3

×





cm  of oleic acid/cm3 of

solution. Next we lightly sprinkle some
lycopodium powder on the surface of water in a
large trough and we put one drop of this solution
in the water. The oleic acid drop spreads into a
thin, large and roughly circular film of molecular
thickness on water surface. Then, we quickly
measure the diameter of the thin film to get its
area A. Suppose we have dropped n drops in
the water. Initially, we determine the
approximate volume of each drop (V cm3).

Volume of n drops of solution
                             = nV cm3

Amount of oleic acid in this solution

                             = nV 
1

20 20×









 cm

3

This solution of oleic acid spreads very fast
on the surface of water and forms a very thin
layer of thickness t.  If this spreads to form a
film of area A cm2, then the thickness of the
film

t =
Volume of the film

Area of the film

or, cm
20 20 

nV
t

A
=

× (2.3)

If we assume that the film has mono-molecular
thickness, then this becomes the size or diameter
of a molecule of oleic acid. The value of this
thickness comes out to be of the order of 10–9 m.

Example 2.5  If the size of a nucleus (in
the range of 10–15 to 10–14 m) is scaled up
to the tip of a sharp pin, what roughly is
the size of an atom ? Assume tip of the pin
to be in the range 10–5m to 10–4m.

Answer  The size of a nucleus is in the range of
10–15 m and 10–14 m.  The tip of a sharp pin is
taken to be in the range of 10–5 m and 10–4 m.
Thus we are scaling up by a factor of 1010. An
atom roughly of size 10–10 m will be scaled up to a
size of 1 m. Thus a nucleus in an atom is as small
in size as the tip of a sharp pin placed at the centre
of a sphere of radius about a metre long. t
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2.3.3  Range of Lengths

The sizes of the objects we come across in the
universe vary over a very wide range. These may
vary from the size of the order of 10–14 m of the
tiny nucleus of an atom to the size of the order
of 1026 m of the extent of the observable universe.
Table 2.3 gives the range and order of lengths
and sizes of some of these objects.

We also use certain special length units for
short and large lengths. These are
1 fermi = 1 f = 10–15 m
1 angstrom = 1 Å = 10–10 m
1 astronomical unit = 1 AU (average distance

    of the Sun from the Earth)
= 1.496 × 1011 m

1 light year = 1 ly= 9.46 × 1015 m (distance
   that light travels with velocity of

   3 × 108 m s–1 in 1 year)
1 parsec = 3.08 × 1016 m (Parsec is the
distance at which average radius of earth’s orbit
subtends an angle of 1 arc second)

2.4  MEASUREMENT OF MASS

Mass is a basic property of matter.  It does not
depend on the temperature, pressure or location
of the object in space. The SI unit of mass is
kilogram (kg). The prototypes of the International
standard kilogram supplied by the International
Bureau of Weights and Measures (BIPM) are
available in many other laboratories of different
countries. In India, this is available at the
National Physical Laboratory  (NPL), New Delhi.

While dealing with atoms and molecules, the
kilogram is an inconvenient unit. In this case,
there is an important standard unit of mass,
called the unified atomic mass unit (u), which
has been established for expressing the mass
of atoms as

1 unified atomic mass unit = 1u
    = (1/12) of the mass of an atom of  carbon-12
isotope ( )6

12 C  including the mass  of electrons
    = 1.66 × 10–27  kg

Mass of commonly available objects can be
determined by a common balance like the one
used in a grocery shop. Large masses in the
universe like planets, stars, etc., based on
Newton’s law of gravitation can be measured by
using gravitational method (See Chapter 8). For
measurement of small masses of atomic/sub-
atomic particles etc., we make use of mass
spectrograph in which radius of the trajectory
is proportional to the mass of a charged particle
moving in uniform  electric and magnetic field.

2.4.1  Range of  Masses

The masses of the objects, we come across in
the universe, vary over a very wide range.  These
may vary from tiny  mass of the order of 10-30 kg
of an electron to the huge mass of about 1055 kg
of the known universe. Table 2.4 gives the range
and order of the typical masses of various
objects.

Table 2.3  Range and order of lengths
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Table 2.4  Range and order of masses

2.5   MEASUREMENT OF TIME
To measure any time interval we need a clock.
We now use an atomic standard of time, which
is based on the periodic vibrations produced in
a cesium atom. This is the basis of the cesium
clock, sometimes called atomic clock, used in
the national standards. Such standards are
available in many laboratories. In the cesium
atomic clock, the second is taken as the time
needed for 9,192,631,770 vibrations of the
radiation corresponding to the transition
between the two hyperfine levels of the ground
state of cesium-133 atom. The vibrations of the
cesium atom regulate the rate of this cesium
atomic clock just as the vibrations of a balance
wheel regulate an ordinary wristwatch or the
vibrations of a small quartz crystal regulate a
quartz wristwatch.

The cesium atomic clocks are very accurate.
In principle they provide portable standard.  The
national standard of time interval ‘second’ as
well as the frequency is maintained through four
cesium atomic clocks.  A cesium atomic clock is
used at the National Physical Laboratory (NPL),
New Delhi to  maintain the Indian standard of
time.

In our country, the NPL has the responsibility
of maintenance and improvement of physical
standards, including that of time, frequency, etc.
Note that the Indian Standard Time (IST) is
linked to this set of atomic clocks. The efficient
cesium atomic clocks are so accurate that they
impart the uncertainty in time realisation as

± 1 × 10–13, i.e. 1 part in 1013.  This implies that
the uncertainty gained over time by such a
device is less than 1 part in 1013; they lose or
gain no more than 3 µs in one year. In view of
the tremendous accuracy in time measurement,
the SI unit of length has been expressed in terms
the path length light travels in certain interval
of time (1/299, 792, 458 of a second) (Table 2.1).

The time interval of events that we come
across in the universe vary over a very wide
range. Table 2.5 gives the range and order of
some typical time intervals.

You may notice that there is an interesting
coincidence between the numbers appearing
in Tables 2.3 and 2.5. Note that the ratio of the
longest and shortest lengths of objects in our
universe is about 1041. Interestingly enough,
the ratio of the longest and shortest time
intervals associated with the events and objects
in our universe is also about 1041. This number,
1041 comes up again in Table 2.4, which lists
typical masses of objects. The ratio of the
largest and smallest masses of the objects in
our universe is about (1041)2. Is this a curious
coincidence between these large numbers
purely accidental ?

2.6 ACCURACY, PRECISION OF INSTRUMENTS
AND ERRORS IN MEASUREMENT

Measurement is the foundation of all
experimental science and technology. The result
of every measurement by any measuring
instrument contains some uncertainty. This
uncertainty is called error. Every calculated
quantity which is based on measured values,
also has an error. We shall distinguish between
two terms: accuracy and precision. The
accuracy of a measurement is a measure of how
close the measured value is to the true value of
the quantity. Precision tells us to what resolution
or limit the quantity is measured.

The accuracy in measurement may depend on
several factors, including the limit or the resolution
of the measuring instrument. For example, suppose
the true value of a certain length is near 3.678 cm.
In one experiment, using a measuring instrument
of resolution 0.1 cm, the measured value is found to
be 3.5 cm, while in another experiment using a
measuring device of greater resolution, say 0.01 cm,
the length is determined to be 3.38 cm. The first
measurement has more accuracy (because it is
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closer to the true value) but less precision (its
resolution is only 0.1 cm), while the
second measurement is less accurate but
more precise. Thus every measurement is
approximate due to errors in measurement. In
general, the errors in measurement can be
broadly classified as (a) systematic errors and
(b) random errors.

Systematic errors

The systematic errors are those errors that
tend to be in one direction, either positive or
negative. Some of the sources of systematic
errors are :

(a) Instrumental errors that arise from the
errors due to imperfect design or calibration
of the measuring instrument, zero error in
the instrument, etc. For example, the
temperature graduations of a thermometer
may be inadequately calibrated (it may read
104 °C at the boiling point of water at STP
whereas it should read 100 °C); in a vernier
callipers the zero mark of vernier scale may
not coincide with the zero mark of the main
scale, or simply an ordinary metre scale may
be worn off at one end.

(b) Imperfection in experimental technique
or procedure To determine the temperature

of a human body, a thermometer placed
under the armpit will always give a
temperature lower than the actual value of
the body temperature. Other external
conditions (such as changes in temperature,
humidity, wind velocity, etc.) during the
experiment may systematically affect the
measurement.

(c) Personal errors that arise due to an
individual’s bias, lack of proper setting of
the apparatus or individual’s carelessness
in taking observations without observing
proper precautions, etc. For example, if you,
by habit, always hold your head a bit too far
to the right while reading the position of a
needle on the scale, you will introduce an
error due to parallax.

Systematic errors can be minimised by
improving experimental techniques, selecting
better instruments and removing personal bias
as far as possible. For a given set-up, these
errors may be estimated to a certain extent and
the necessary corrections may be applied to the
readings.

Random errors

The random errors are those errors, which occur
irregularly and hence are random with respect

Table 2.5   Range and order of time intervals
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to sign and size. These can arise due to random
and unpredictable fluctuations in experimental
conditions (e.g. unpredictable fluctuations in
temperature, voltage supply, mechanical
vibrations of experimental set-ups, etc), personal
(unbiased) errors by the observer taking
readings, etc. For example, when the same
person repeats the same observation, it is very
likely that he may get different readings
everytime.

Least count error

The smallest value that can be measured by the
measuring instrument is called its least count.
All the readings or measured values are good only
up to this value.

The least count error is the error
associated with the resolution of the instrument.
For example, a vernier callipers has the least
count as 0.01cm; a spherometer may have a
least count of 0.001 cm. Least count error
belongs to the category of random errors but
within a limited size; it occurs with both
systematic and random errors. If we use a metre
scale for measurement of length, it may have
graduations at 1 mm division scale spacing or
interval.

Using instruments of higher precision,
improving experimental techniques, etc., we can
reduce the least count error. Repeating the
observations several times and taking the
arithmetic mean of all the observations, the
mean value would be very close to the true value
of the measured quantity.

2.6.1 Absolute Error, Relative Error and
Percentage Error

(a) Suppose the values obtained in several
measurements are a

1
, a

2
, a

3
...., a

n
.  The

arithmetic mean of these values is taken as
the best possible value of the quantity under
the given conditions of measurement as :

a
mean

 = (a
1
+a

2
+a

3
+...+a

n
 ) / n (2.4)

or,

a a / nmean i

i 1

n

=
=
∑ (2.5)

This is because, as explained earlier, it is
reasonable to suppose that individual
measurements are as likely to overestimate

as to underestimate the true value of the
quantity.

The magnitude of the difference

between the individual measurement and

the true value of the quantity is called the

absolute error of the measurement. This
is denoted by |∆a |. In absence of any other
method of knowing true value, we considered
arithmatic mean as the true value.  Then the
errors in the individual measurement values
from the true value, are

∆a
1
  = a

1
 – a

mean
,

∆a
2
  = a

2
 – a

mean
,

....      ....      ....

....      ....      ....
∆a 

n
 = a

n
 – a

mean

The ∆a calculated above may be positive in
certain cases and negative in some other
cases. But absolute error |∆a| will always
be positive.

(b) The arithmetic mean of all the absolute errors

is taken as the final or mean absolute error

of the value of the physical quantity a. It is
represented by ∆a

mean
.

Thus,

∆a
mean

 = (|∆a
1
|+|∆a

2
 |+|∆a

3
|+...+ |∆a

n
|)/n

(2.6)

=
=
∑
i 1

n

|∆a
i
|/n (2.7)

If we do a single measurement, the value we
get may be in the range a

mean
 ±  ∆a

mean

i.e.      a = a
mean

 ±  ∆a
mean

or,
     a

mean
 – ∆a

mean
 ≤ a  ≤ a

mean
 + ∆a

mean

(2.8)

This implies that any measurement of the
physical quantity a is likely to lie between

(a
mean

+ ∆a
mean

)  and  (a
mean

− ∆a
mean

).
(c) Instead of the absolute error, we often use

the relative error or the percentage error

(δa).  The relative error is the ratio of the

mean absolute error ∆∆∆∆∆a
mean

 to the mean

value a
mean 

of the quantity measured.
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t

t

Relative error = ∆a
mean

/a
mean

(2.9)

When the relative error is expressed in per
cent, it is called the percentage error (δa).

Thus, Percentage error

δa = (∆a
mean

/a
mean

) × 100% (2.10)

Let us now consider an example.

Example 2.6  Two clocks are being tested
against a standard clock located in a
national laboratory.  At 12:00:00 noon by
the standard clock, the readings of the two
clocks are :

Clock 1 Clock 2

Monday 12:00:05 10:15:06
Tuesday 12:01:15 10:14:59
Wednesday 11:59:08 10:15:18
Thursday 12:01:50 10:15:07
Friday 11:59:15 10:14:53
Saturday 12:01:30 10:15:24
Sunday 12:01:19 10:15:11

If you are doing an experiment that requires
precision time interval measurements, which
of the two clocks will you prefer ?

Answer   The range of variation over the seven
days of observations is 162 s for clock 1, and
31 s for clock 2.  The average reading of clock 1
is much closer to the standard time than the
average reading of clock 2.  The important point
is that a clock’s zero error is not as significant
for precision work as its variation, because a
‘zero-error’ can always be easily corrected.
Hence clock 2 is to be preferred to clock 1.   t

Example 2.7  We measure the period of
oscillation of a simple pendulum.  In
successive measurements, the readings
turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s
and 2.80 s. Calculate the absolute errors,
relative error or percentage error.

Answer   The mean period of oscillation of the
pendulum

( )
T =

+ + + +2.63 2.56 2.42 2.71 2.80 s

5

= 
13.12

5
 s

= 2.624  s
= 2.62  s

As the periods are measured to a resolution
of 0.01 s, all times are to the second decimal; it
is proper to put this mean period also to the
second decimal.

The errors in the measurements are

2.63 s – 2.62 s =   0.01 s
2.56 s – 2.62 s = – 0.06 s
2.42 s – 2.62 s = – 0.20 s
2.71 s – 2.62 s =    0.09 s
2.80 s – 2.62 s =    0.18 s

Note that the errors have the same units as the
quantity to be measured.

The arithmetic mean of all the absolute errors
(for arithmetic mean, we take only the
magnitudes) is

∆Τ
mean

 = [(0.01+ 0.06+0.20+0.09+0.18)s]/5
              = 0.54 s/5
              = 0.11 s

That means, the period of oscillation of the
simple pendulum is (2.62 ± 0.11) s i.e. it lies
between (2.62 + 0.11) s and (2.62 – 0.11) s or
between 2.73 s and 2.51 s.  As the arithmetic
mean of all the absolute errors is 0.11 s, there
is already an error in the tenth of a second.
Hence there is no point in giving the period to a
hundredth.  A more correct way will be to write

             T = 2.6 ± 0.1 s

Note that the last numeral 6 is unreliable, since
it may be anything between 5 and 7. We indicate
this by saying that the measurement has two
significant figures. In this case, the two
significant figures are 2, which is reliable and
6, which has an error associated with it.  You
will learn more about the significant figures in
section 2.7.

For this example, the relative error or the
percentage error is

δa = × =
01

100 4
.

2.6
%                     t

2.6.2  Combination of Errors

If we do an experiment involving several
measurements, we must know how the errors
in all the measurements combine.  For example,
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t

mass density is obtained by deviding mass by
the volume of the substance. If we have errors
in the measurement of mass and of the sizes or
dimensions, we must know what the error will
be in the density of the substance. To make such
estimates, we should learn how errors combine
in various mathematical operations. For this,
we use the following procedure.

(a)  Error of a sum or a difference

Suppose two physical quantities A and B have
measured values A ± ∆A, B ± ∆B respectively
where ∆A and ∆B are their absolute errors. We
wish to find the error ∆Z in the sum

Z = A + B.
We have by addition, Z ± ∆Z

= (A ± ∆A) + (B ± ∆B).
The maximum possible error in Z

∆Z = ∆A + ∆B

For the difference Z = A – B,  we have
                    Z ± ∆ Z =  (A ± ∆A) – (B ± ∆B)
                                = (A – B) ± ∆A ± ∆B

or, ± ∆Z =  ± ∆A ± ∆B

The maximum value of the error ∆Z  is again
∆A + ∆B.

Hence the rule : When two quantities are

added or subtracted, the absolute error in the

final result is the sum of the absolute errors

in the individual quantities.

Example 2.8  The temperatures of two
bodies measured by a thermometer are
t1 = 20 0C ± 0.5 0C and t2 = 50 0C ± 0.5 0C.
Calculate the temperature difference and
the error theirin.

Answer  t′ = t2–t1 = (50 0C±0.5 0C)– (200C±0.5 0C)

 t′ = 30 0C ± 1 0C t

(b)  Error of a product or a quotient

Suppose Z = AB and the measured values of A
and B are A ± ∆A and B ± ∆B. Then

Z ± ∆Z = (A ± ∆A)  (B ± ∆B)

                     = AB ± B ∆A ± A ∆B ± ∆A ∆B.

Dividing LHS by Z and RHS by AB we have,

1±(∆Z/Z) = 1 ± (∆A/A) ± (∆B/B) ± (∆A/A)(∆B/B).

Since ∆A and ∆B are small, we shall ignore their
product.

Hence the maximum relative error

∆Z/ Z = (∆A/A) + (∆B/B).

You can easily verify that this is true for division
also.

Hence the rule : When two quantities are
multiplied or divided, the relative error in the
result is the sum of the relative errors in the
multipliers.

How will you measure the length of a line?

What a naïve question, at this stage, you might
say! But what if it is not a straight line? Draw
a zigzag line in your copy, or on the blackboard.
Well, not too difficult again. You might take a
thread, place it along the line, open up the
thread, and measure its length.

Now imagine that you want to measure the
length of a national highway, a river, the railway
track between two stations, or the boundary
between two states or two nations. If you take
a string of length 1 metre or 100 metre, keep it
along the line, shift its position every time, the
arithmetic of man-hours of labour and expenses
on the project is not commensurate with the
outcome. Moreover, errors are bound to occur
in this enormous task. There is an interesting
fact about this. France and Belgium share a
common international boundary, whose length
mentioned in the official documents of the two
countries differs substantially!

Go one step beyond and imagine the
coastline where land meets sea. Roads and rivers
have fairly mild bends as compared to a
coastline. Even so, all documents, including our
school books, contain information on the length
of the coastline of Gujarat or Andhra Pradesh,
or the common boundary between two states,
etc. Railway tickets come with the distance
between stations printed on them. We have
‘milestones’ all along the roads indicating the
distances to various towns. So, how is it done?

One has to decide how much error one can
tolerate and optimise cost-effectiveness. If you
want smaller errors, it will involve high
technology and high costs. Suffice it to say that
it requires fairly advanced level of physics,
mathematics, engineering and technology. It
belongs to the areas of fractals, which has lately
become popular in theoretical physics. Even
then one doesn’t know how much to rely on
the figure that props up, as is clear from the
story of France and Belgium. Incidentally, this
story of the France-Belgium discrepancy
appears on the first page of an advanced Physics
book on the subject of fractals and chaos!
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Example 2.9  The resistance R = V/I where
V = (100 ± 5)V and I = (10 ± 0.2)A. Find the
percentage error in R.

Answer  The percentage error in V is 5% and in
I  it is 2%.  The total error in R would therefore
be 5% + 2% = 7%. t

Example 2.10  Two resistors of resistances
R1 = 100 ±3 ohm and R2 = 200 ± 4 ohm are
connected (a) in series, (b) in parallel. Find
the equivalent resistance of the (a) series
combination, (b) parallel combination. Use
for (a) the relation R = R1 + R2, and for (b)

 and 

Answer  (a) The equivalent resistance of series
combination

R = R1 + R2 =  (100 ± 3) ohm + (200 ± 4) ohm

        = 300 ± 7 ohm.

(b) The equivalent resistance of parallel
combination

1 2

1 2

200
3

R R
R

R R
′ = =

+  = 66.7 ohm

Then, from 
1 2

1 1 1
R R R

= +
′

we get,

1 2
2 2 2

1 2

R RR

R R R

′ ∆ ∆∆
= +

′

( ) ( )2 21 2
2 2

1 2

R R
R R R

R R

∆ ∆′ ′ ′∆ = +

 

2 266.7 66.7
3 4

100 200
   = +   
   

 = 1.8

Then, 66.7 1.8 ohmR ′ = ±
(Here, ∆R is expresed as 1.8 instead of 2 to

keep in confirmity with the rules of significant
figures.) t

(c) Error in case of a measured quantity
raised to a power

Suppose   Z  = A2,

Then,
     ∆Z/Z = (∆A/A) + (∆A/A) = 2 (∆A/A).

Hence, the relative error in A2 is two times the
error in A.

In general, if   Z = Ap Bq/Cr

Then,
      ∆Z/Z = p (∆A/A) + q (∆B/B) + r (∆C/C).

Hence the rule : The relative error in a
physical quantity raised to the power k is the
k times the relative error in the individual
quantity.

Example 2.11   Find the relative error in
Z, if Z = A4B1/3/CD3/2.

Answer  The relative error in Z is  ∆Z/Z =
4(∆A/A) +(1/3) (∆B/B) + (∆C/C) + (3/2) (∆D/D).

t

Example 2.12  The period of oscillation of

a simple pendulum is T L/g.= 2π
Measured value of L is 20.0 cm known to 1
mm accuracy and time for 100 oscillations
of the pendulum is found to be 90 s using
a wrist watch of 1 s resolution. What is the
accuracy in the determination of g ?

Answer   g = 4π2L/T2

Here, T = 
t

n
 and 

t
T

n

∆
∆ = . Therefore, 

T t

T t

∆ ∆
= .

The errors in both L and t are the least count
errors. Therefore,
(∆g/g) = (∆L/L) + 2(∆T/T )

  = 
0 1

20 0
2

1
90

0 027
.
.

.+ 





=

Thus, the percentage error in g is
 100 (∆g/g) = 100(∆L/L) + 2 × 100 (∆T/T )

= 3% t

2.7  SIGNIFICANT FIGURES

As discussed above, every measurement
involves errors. Thus, the result of
measurement should be reported in a way that
indicates the precision of measurement.
Normally, the reported result of measurement
is a number that includes all digits in the
number that are known reliably plus the first
digit that is uncertain. The reliable digits plus
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the first uncertain digit are known as
significant digits or significant figures. If we
say the period of oscillation of a simple
pendulum is 1.62 s, the digits 1 and 6 are
reliable and certain, while the digit 2 is
uncertain. Thus, the measured value has three
significant figures. The length of an object
reported after measurement to be 287.5 cm has
four significant figures, the digits 2, 8, 7 are
certain while the digit 5 is uncertain. Clearly,
reporting the result of measurement that
includes more digits than the significant digits
is superfluous and also misleading since it would
give a wrong idea about the precision of
measurement.

The rules for determining the number of
significant figures can be understood from the
following examples. Significant figures indicate,
as already mentioned, the precision of
measurement which depends on the least count
of the measuring instrument. A choice of
change of different units does not change the
number of significant digits or figures in a
measurement. This important remark makes
most of the following observations clear:
(1) For example, the length 2.308 cm has four
significant figures. But in different units, the
same value can be written as 0.02308 m or 23.08
mm or 23080 µm.

All these numbers have the same number of
significant figures (digits 2, 3, 0, 8), namely four.
This shows that the location of decimal point is
of no consequence in determining the number
of significant figures.
The example gives the following rules :
• All the non-zero digits are significant.

• All the zeros between two non-zero digits

are significant, no matter where the
decimal point is, if at all.

• If the number is less than 1, the zero(s)

on the right of decimal point but to the
left of the first non-zero digit are not
significant. [In 0.00 2308, the underlined
zeroes are not significant].

• The terminal or trailing zero(s) in a

number without a decimal point are not
significant.

[Thus 123 m = 12300 cm = 123000 mm has
three significant figures, the trailing zero(s)
being not significant.] However, you can also
see the next observation.

• The trailing zero(s) in a number with a

decimal point are significant.
[The numbers 3.500 or 0.06900 have four
significant figures each.]

(2) There can be some confusion regarding the
trailing zero(s). Suppose a length is reported to
be 4.700 m. It is evident that the zeroes here
are meant to convey the precision of
measurement and are, therefore, significant. [If
these were not, it would be superfluous to write
them explicitly, the reported measurement
would have been simply 4.7 m]. Now suppose
we change units, then

4.700 m = 470.0 cm = 4700 mm = 0.004700 km

Since the last number has trailing zero(s) in a
number with no decimal, we would conclude
erroneously from observation (1) above that the
number has two significant figures, while in
fact, it has four significant figures and a mere
change of units cannot change the number of
significant figures.

(3) To remove such ambiguities in
determining the number of significant
figures, the best way is to report every
measurement in scientific notation (in the
power of 10). In this notation, every number is
expressed as a × 10b, where a is a number
between 1 and 10, and b is any positive or
negative exponent (or power) of 10.  In order to
get an approximate idea of the number, we may
round off the number a to 1 (for a ≤ 5) and to 10
(for 5<a ≤ 10). Then the number can be
expressed approximately as 10b in which the
exponent (or power) b of 10 is called order of
magnitude of the physical quantity. When only
an estimate is required, the quantity is of the
order of 10b. For example, the diameter of the
earth (1.28×107m) is of the order of 107m with
the order of magnitude 7. The diameter of
hydrogen atom (1.06 ×10–10m) is of the order of
10–10m, with the order of magnitude
–10. Thus, the diameter of the earth is 17 orders
of magnitude larger than the hydrogen atom.

It is often customary to write the decimal after
the first digit. Now the confusion mentioned in
(a) above disappears :

 4.700 m = 4.700 × 102 cm
        = 4.700 × 103 mm = 4.700 × 10–3 km

The power of 10 is irrelevant to the
determination of significant figures. However, all
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zeroes appearing in the base number in the
scientific notation are significant. Each number
in this case has four significant figures.

Thus, in the scientific notation, no confusion
arises about the trailing zero(s) in the base
number a. They are always significant.

(4) The scientific notation is ideal for reporting
measurement. But if this is not adopted, we use
the rules adopted in the preceding example :
• For a number greater than 1, without any

decimal, the trailing zero(s) are not
significant.

• For a number with a decimal, the trailing

zero(s) are significant.

(5) The digit 0 conventionally put on the left of a
decimal for a number less than 1 (like 0.1250)
is never significant. However, the zeroes at the
end of such number are significant in a
measurement.

(6) The multiplying or dividing factors which are
neither rounded numbers nor numbers
representing measured values are exact and
have infinite number of significant digits. For

example in 
2
d

r =  or  s = 2πr, the factor 2 is an

exact number and it can be written as 2.0, 2.00

or 2.0000 as required. Similarly, in 
t

T
n

= , n is

an exact number.

2.7.1 Rules for Arithmetic Operations with
Significant Figures

The result of a calculation involving approximate
measured values of quantities (i.e. values with
limited number of significant figures) must reflect
the uncertainties in the original measured values.
It cannot be more accurate than the original
measured values themselves on which the result
is based. In general, the final result should not
have more significant figures than the original
data from which it was obtained. Thus, if mass of
an object is measured to be, say, 4.237 g (four
significant figures) and its volume is measured to
be 2.51 cm3, then its density, by mere arithmetic
division, is 1.68804780876 g/cm3 upto 11 decimal
places. It would be clearly absurd and irrelevant
to record the calculated value of density to such a
precision when the measurements on which the
value is based, have much less precision. The

following rules for arithmetic operations with
significant figures ensure that the final result of
a calculation is shown with the precision that is
consistent with the precision of the input
measured values :
(1)  In multiplication or division, the final
result should retain as many significant
figures as are there in the original number
with the least significant figures.

Thus, in the example above, density should
be reported to three significant figures.

Density
4.237g

2.51 cm
1.69 g cm3

-3= =

Similarly,  if the speed of light is given as
3 × 108 m s-1 (one significant figure) and one
year (1y = 365.25 d) has 3.1557 × 107 s (five

significant figures), the light year is 9.47 × 1015 m
(three significant figures).

(2) In addition or subtraction, the final result
should retain as many decimal places as are
there in the number with the least decimal
places.

For example, the sum of the numbers
436.32 g, 227.2 g and 0.301 g by mere arithmetic
addition,  is 663.821 g. But the least precise
measurement (227.2 g) is correct to only one
decimal place. The final result should, therefore,
be rounded off to 663.8 g.

Similarly, the difference in length can be
expressed as :

0.307 m – 0.304 m = 0.003 m = 3 × 10–3 m.

Note that we should not use the rule (1)
applicable for multiplication and division and
write 664 g as the result in the example of
addition and 3.00 × 10–3 m in the example of
subtraction. They do not convey the precision
of measurement properly. For addition and
subtraction, the rule is in terms of decimal
places.

2.7.2   Rounding off the Uncertain Digits

The result of computation with approximate
numbers, which contain more than one
uncertain digit, should be rounded off.  The rules
for rounding off numbers to the appropriate
significant figures are obvious in most cases.  A
number 2.746 rounded off to three significant
figures is 2.75, while the number 2.743 would
be 2.74.  The rule by convention is that the
preceding digit is raised by 1 if the
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insignificant digit to be dropped (the

underlined digit in this case)  is more than

5, and is left  unchanged if the latter is less

than 5.  But what if the number is 2.745 in
which the insignificant digit is 5.  Here, the
convention is that if the preceding digit is

even, the insignificant digit is simply

dropped and, if it is odd, the preceding digit

is raised by 1. Then, the number 2.745 rounded
off to three significant figures becomes 2.74.  On
the other hand, the number 2.735 rounded off
to three significant figures becomes 2.74 since
the preceding digit is odd.

In any involved or complex multi-step
calculation, you should retain, in intermediate
steps, one digit more than the significant digits
and round off to proper significant figures at the
end of the calculation.  Similarly, a number
known to be within many significant figures,
such as in 2.99792458  × 108 m/s for the speed
of light in vacuum, is rounded off to an
approximate value 3 × 108 m/s , which is often
employed in computations.  Finally, remember
that exact numbers that appear in formulae like

2 π in T
L

g
= 2π ,  have a large (infinite) number

of significant figures. The value of π =
3.1415926.... is known to a large number of
significant figures. You may take the  value as
3.142 or 3.14 for π, with limited number of
significant figures as required in specific
cases.

Example 2.13  Each side of a cube is
measured to be 7.203 m.  What are the
total surface area and the volume of the
cube to appropriate significant figures?

Answer   The number of significant figures in
the measured length is 4.  The calculated area
and the volume should therefore be rounded off
to 4 significant figures.

Surface area of the cube = 6(7.203)2 m2

= 311.299254 m2

= 311.3 m2

Volume of the cube = (7.203)3  m3

= 373.714754 m3

= 373.7 m3 t

Example 2.14  5.74 g of a substance
occupies 1.2 cm3.  Express its density by
keeping the significant figures in view.

Answer  There are 3 significant figures in the
measured mass whereas there are only 2
significant figures in the measured  volume.
Hence the density should be expressed to only
2 significant figures.

Density = −5.74
1.2

g cm 3

                       = 4.8 g cm--3 .   t

2.7.3 Rules for Determining the Uncertainty
in the Results of Arithmatic
Calculations

The rules for determining the uncertainty or
error in the number/measured quantity in
arithmetic operations can be understood from
the following examples.
(1) If the length and breadth of a thin
rectangular sheet are measured, using a metre
scale as 16.2 cm and, 10.1 cm respectively, there
are three significant figures in each
measurement.  It means that the length l may
be written as

                       l = 16.2 ± 0.1  cm

      = 16.2 cm ± 0.6 %.

Similarly, the breadth b may be written as

b = 10.1  ± 0.1 cm

   = 10.1 cm ± 1 %

Then, the error of the product of two (or more)
experimental values, using the combination of
errors rule, will be

    l b = 163.62 cm2 + 1.6%

         = 163.62 + 2.6 cm2

This leads us to quote the final result as

l b = 164 + 3 cm2

Here 3 cm2 is the uncertainty or error in the
estimation of area of rectangular sheet.

(2) If a set of experimental data is specified
to n significant figures, a result obtained by
combining the data will also be valid to n
significant figures.

However, if data are subtracted, the number of
significant figures can be reduced.
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For example, 12.9 g – 7.06 g, both specified to three
significant figures, cannot properly be evaluated
as 5.84 g but only as 5.8 g, as uncertainties in
subtraction or addition combine in a different
fashion (smallest number of decimal places rather
than the number of significant figures in any of
the number added or subtracted).

(3) The relative error of a value of number
specified to significant figures depends not
only on n but also on the number itself.

For example,  the accuracy  in measurement of
mass 1.02 g is ± 0.01 g  whereas another
measurement 9.89 g is also accurate to  ± 0.01 g.
The relative error in 1.02 g is

= (± 0.01/1.02) × 100 %
= ± 1%

Similarly, the relative error in 9.89 g  is
= (± 0.01/9.89) × 100 %

                   = ± 0.1 %
Finally, remember that intermediate results in

a multi-step computation should be

calculated to one more significant figure in

every measurement than the number of

digits in the least precise measurement.

These should be justified by the data and then
the arithmetic operations may be carried out;
otherwise rounding errors can build up. For
example, the reciprocal of 9.58, calculated (after
rounding off) to the same number of significant
figures (three) is 0.104, but the reciprocal of
0.104 calculated to three significant figures is
9.62.  However, if we had written 1/9.58 = 0.1044
and then taken the reciprocal to three significant
figures, we would have retrieved the original
value of 9.58.

This example justifies the idea to retain one
more extra digit (than the number of digits in
the least precise measurement) in intermediate
steps of the complex multi-step calculations in
order to avoid additional errors in the process
of rounding off the numbers.

2.8  DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described
by its dimensions. All the physical quantities
represented by derived units can be expressed
in terms of some combination of seven
fundamental or base quantities. We shall call
these base quantities as the seven dimensions
of the physical world, which are denoted with

square brackets [ ]. Thus, length has the
dimension [L], mass [M], time [T], electric current
[A], thermodynamic temperature [K], luminous
intensity [cd], and amount of substance [mol].
The dimensions of a physical quantity are the
powers (or exponents) to which the base
quantities are raised to represent that
quantity. Note that using the square brackets
[  ] round a quantity means that we are dealing
with ‘the dimensions of’ the quantity.

In mechanics, all the physical quantities can
be written in terms of the dimensions [L], [M]
and [T]. For example, the volume occupied by
an object is expressed as the product of length,
breadth and height, or three lengths. Hence the
dimensions of volume are [L] × [L] × [L] = [L]3 = [L3].
As the volume is independent of mass and time,
it is said to possess zero dimension in mass [M°],
zero dimension in time [T°] and three
dimensions in length.

Similarly, force, as the product of mass and
acceleration, can be expressed as
Force   = mass × acceleration

= mass × (length)/(time)2

The dimensions of force are [M] [L]/[T]2 =
[M L T–2]. Thus, the force has one dimension in
mass, one dimension in length, and –2
dimensions in time. The dimensions in all other
base quantities are zero.

Note that in this type of representation, the
magnitudes are not considered. It is the quality
of the type of the physical quantity that enters.
Thus, a change in velocity, initial velocity,
average velocity, final velocity, and speed are
all equivalent in this context. Since all these
quantities can be expressed as length/time,
their dimensions are [L]/[T] or [L T–1].

2.9 DIMENSIONAL FORMULAE AND
DIMENSIONAL EQUATIONS

The expression which shows how and which of
the base quantities represent the dimensions
of a physical quantity is called the dimensional
formula of the given physical quantity. For
example, the dimensional formula of the volume
is [M° L3 T°],  and  that of speed or velocity is
[M° L T-1]. Similarly, [M° L T–2] is the dimensional
formula of acceleration and [M L–3 T°] that of
mass density.

An equation obtained by equating a physical
quantity with its dimensional formula is called
the dimensional equation of the physical
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quantity.  Thus, the dimensional equations are
the equations, which represent the dimensions
of a physical quantity in terms of the base
quantities. For example, the dimensional
equations of volume [V ],  speed [v], force [F ] and
mass density [ρ] may be expressed as

[V] = [M0 L3 T0]
[v] = [M0 L T–1]
[F] = [M L T–2]
[ρ] = [M L–3 T0]

The dimensional equation can be obtained
from the equation representing the relations
between the physical quantities. The
dimensional formulae of a large number and
wide variety of physical quantities, derived from
the equations representing the relationships
among other physical quantities and expressed
in terms of base quantities are given in
Appendix 9 for your guidance and ready
reference.

2.10 DIMENSIONAL ANALYSIS AND ITS
APPLICATIONS

The recognition of concepts of dimensions, which
guide the description of physical behaviour is
of basic importance as only those physical
quantities can be added or subtracted which
have the same dimensions.  A thorough
understanding of dimensional analysis helps us
in deducing certain relations among different
physical quantities and checking the derivation,
accuracy and dimensional consistency or
homogeneity of various mathematical
expressions.  When magnitudes of two or more
physical quantities are multiplied, their units
should be treated in the same manner as
ordinary algebraic symbols. We can cancel
identical units in the numerator and
denominator.  The same is true for dimensions
of a physical quantity.  Similarly, physical
quantities represented by symbols on both sides
of a mathematical equation must have the same
dimensions.

2.10.1 Checking the Dimensional
Consistency of Equations

The magnitudes of physical quantities may be
added together or subtracted from one another
only if they have the same dimensions.  In other
words, we can add or subtract similar physical
quantities. Thus, velocity cannot be added to
force, or an electric current cannot be subtracted

from the thermodynamic temperature. This
simple principle called the principle of
homogeneity of dimensions in an equation is
extremely useful in checking the correctness of
an equation.  If the dimensions of all the terms
are not same, the equation is wrong.  Hence, if
we derive an expression for the length (or
distance) of an object, regardless of the symbols
appearing in the original mathematical relation,
when all the individual dimensions are
simplified, the remaining dimension must be
that of length.  Similarly, if we derive an equation
of speed, the dimensions on both the sides of
equation, when simplified, must be of length/
time, or [L T–1].

Dimensions are customarily used as a
preliminary test of the consistency of an
equation, when there is some doubt about the
correctness of the equation. However, the
dimensional consistency does not guarantee
correct equations. It is uncertain to the extent
of dimensionless quantities or functions. The
arguments of special functions, such as the
trigonometric, logarithmic and exponential
functions must be dimensionless. A pure
number, ratio of similar physical quantities,
such as angle as the ratio (length/length),
refractive index as the ratio (speed of light in
vacuum/speed of light in medium) etc., has no
dimensions.

Now we can test the dimensional consistency
or homogeneity of the equation

( ) 21/2  0 0x x v  t a t= + +
for the distance x travelled by a particle or body
in time t which starts from the position x

0
 with

an initial velocity v
0
 at time t = 0 and has uniform

acceleration a along the direction of motion.
The dimensions of each term may be written as

                 [x] = [L]
               [x

0
 ] = [L]

             [v
0
 t] = [L T–1]  [T]

                     = [L]
       [(1/2) a t2] = [L T–2] [T2]
                     = [L]
As each term on the right hand side of this
equation has the same dimension, namely that
of length, which is same as the dimension of
left hand side of the equation, hence this
equation is a dimensionally correct equation.

It may be noted that a test of consistency of
dimensions tells us no more and no less than a
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test of consistency of units, but has the
advantage that we need not commit ourselves
to a particular choice of units, and we need not
worry about conversions among multiples and
sub-multiples of the units.  It may be borne in
mind that if an equation fails this consistency
test, it is proved wrong, but if it passes, it is
not proved right.  Thus, a dimensionally correct
equation need not be actually an exact
(correct) equation, but a dimensionally wrong
(incorrect) or inconsistent equation must be
wrong.

Example 2.15  Let us consider an equation

      
1

2
m v m g h2 =

where m is the mass of the body, v its
velocity, g  is the acceleration due to
gravity and h is the height.  Check
whether this equation is dimensionally
correct.

Answer  The dimensions of LHS are
             [M]  [L T–1 ]2 = [M] [ L2 T–2]

         = [M L2 T–2]

The dimensions of RHS are
           [M][L T–2]  [L] = [M][L2 T–2]

         = [M L2 T–2]

The dimensions of LHS and RHS are the same and
hence the equation is dimensionally correct. t

Example 2.16   The SI unit of energy is
J =  kg m2 s–2; that of speed v is  m s–1 and
of acceleration a is   m s–2.  Which of the
formulae for kinetic energy (K) given below
can you rule out on the basis of
dimensional arguments (m stands for the
mass of the body) :
(a) K = m2 v3

(b) K = (1/2)mv2

(c) K = ma

(d) K = (3/16)mv2

(e) K = (1/2)mv2 + ma

Answer   Every correct formula or equation must
have the same dimensions on both sides of the
equation.  Also, only quantities with the same
physical dimensions can be added or
subtracted.  The dimensions of the quantity on
the right side are [M2 L3 T–3] for (a);  [M L2 T–2] for

(b) and (d); [M L T–2] for (c).  The quantity on the
right side of (e) has no proper dimensions since
two quantities of different dimensions have been
added.  Since the kinetic energy K has the
dimensions of [M L2 T–2], formulas (a), (c) and (e)
are ruled out.  Note that dimensional arguments
cannot tell which of the two, (b) or (d), is the
correct formula.  For this, one must turn to the
actual definition of kinetic energy (see Chapter
6).  The correct formula for kinetic energy is given
by (b). t

2.10.2 Deducing Relation among the
Physical Quantities

The method of dimensions can sometimes be
used to deduce relation among the physical
quantities. For this we should know the
dependence of the physical quantity on other
quantities (upto three physical quantities or
linearly independent variables) and consider it
as a product type of the dependence. Let us take
an example.

Example 2.17 Consider a simple
pendulum, having a bob attached to a
string, that oscillates under the action of
the force of gravity. Suppose that the period
of oscillation of the simple pendulum
depends on its length  (l), mass of the bob
(m) and acceleration due to gravity (g).
Derive the expression for its time period
using method of dimensions.

Answer  The dependence of time period T on
the  quantities l, g and m as a product may be
written as :

T = k lx gy mz

where k is dimensionless constant and x, y

and z are the exponents.
By considering dimensions on both sides, we

have
o o 1 1 1 –2 1[L M T ]=[L ] [L T ] [M ]x y z

= Lx+y T–2y  Mz

On equating the dimensions on both sides,
we have

x + y = 0; –2y = 1; and z = 0

So that 
1 1

, – , 0
2 2

x y z= = =

Then, T = k l½ g–½
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SUMMARY

1. Physics is a quantitative science, based on measurement of physical quantities.  Certain
physical quantities have been chosen as fundamental or base quantities (such as length,
mass, time, electric current, thermodynamic temperature, amount of substance, and
luminous intensity).

2. Each base quantity is defined in terms of a certain basic, arbitrarily chosen but properly
standardised reference standard called unit (such as metre, kilogram, second, ampere,
kelvin, mole and candela).  The units for the fundamental or base quantities are called
fundamental or base units.

3. Other physical quantities, derived from the base quantities, can be expressed as a
combination of the base units and are called derived units.  A complete set of units,
both fundamental and derived, is called a system of units.

4. The International System of Units (SI) based on seven base units is at present
internationally accepted unit system and is widely used throughout the world.

5. The SI units are used in all physical measurements, for both the base quantities and
the derived quantities obtained from them.  Certain derived units are expressed by
means of SI units with special names (such as joule, newton, watt, etc).

6. The SI units have well defined and internationally accepted unit symbols (such as m for
metre, kg for kilogram, s for second, A for ampere, N for newton etc.).

7. Physical measurements are usually expressed for small and large quantities in scientific
notation, with powers of 10.  Scientific notation and the prefixes are used to simplify
measurement notation and numerical computation, giving indication to the precision
of the numbers.

8. Certain general rules and guidelines must be followed for using notations for physical
quantities and standard symbols for SI units, some other units and SI prefixes for
expressing properly the physical quantities and measurements.

9. In computing any physical quantity, the units for derived quantities involved in the
relationship(s) are treated as though they were algebraic quantities till the desired
units are obtained.

10. Direct and indirect methods can be used for the measurement of physical quantities.
In measured quantities, while expressing the result, the accuracy and precision of
measuring instruments along with errors in measurements should be taken into account.

11. In measured and computed quantities proper significant figures only should be retained.
Rules for determining the number of significant figures, carrying out arithmetic
operations with them, and ‘rounding off ‘ the uncertain digits must be followed.

12. The dimensions of base quantities and combination of these dimensions describe the
nature of physical quantities. Dimensional analysis can be used to check the dimensional
consistency of equations, deducing relations among the physical quantities, etc. A
dimensionally consistent equation need not be actually an exact (correct) equation,
but a dimensionally wrong or inconsistent equation must be wrong.

or, T = 
l

k
g

Note that value of constant k can not be obtained
by the method of dimensions. Here it does not
matter if some number multiplies the right side
of this formula, because that does not affect its
dimensions.

Actually, k = 2π so that T = 2
l

g
π t

Dimensional analysis is very useful in deducing
relations among the interdependent physical
quantities. However, dimensionless constants
cannot be obtained by this method. The method
of dimensions can only test the dimensional
validity, but not  the exact relationship between
physical quantities in any equation. It does not
distinguish between the physical quantities
having same dimensions.

A number of exercises at the end of this
chapter will help you develop skill in
dimensional analysis.
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EXERCISES

Note : In stating numerical answers, take care of significant figures.
2.1 Fill in the blanks

(a) The volume of a cube of side 1 cm is equal to .....m3

(b) The surface area of a solid cylinder of radius 2.0 cm and height 10.0 cm is equal to
      ...(mm)2

(c)  A vehicle moving with a speed of 18 km h–1 covers....m in 1 s
(d) The relative density of lead is 11.3.  Its density is ....g cm–3 or ....kg m–3.

2.2 Fill in the blanks by suitable conversion of units
(a) 1 kg m2 s–2  = ....g cm2 s–2

(b) 1 m  = .....  ly
(c) 3.0 m s–2  = .... km h–2

(d) G = 6.67 × 10–11 N m2 (kg)–2 = .... (cm)3 s–2  g–1.

2.3 A calorie is a unit of heat (energy in transit) and it equals about 4.2 J where 1J =
1 kg m2 s–2.  Suppose we employ a system of units in which the unit of mass equals α
kg, the unit of length equals β m, the unit of time is γ s.  Show that a calorie has a
magnitude 4.2 α –1 β –2 γ 2 in terms of the new units.

2.4 Explain this statement clearly :
“To call a dimensional quantity ‘large’ or ‘small’ is meaningless without specifying a
standard for comparison”. In view of this, reframe the following statements wherever
necessary :
(a) atoms are very small objects
(b) a jet plane moves with great speed
(c) the mass of Jupiter is very large
(d) the air inside this room contains a large number of molecules
(e) a proton is much more massive than an electron
(f) the speed of sound is much smaller than the speed of light.

2.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What
is the distance between the Sun and the Earth in terms of the new unit if light takes
8 min and 20 s to cover this distance ?

2.6 Which of the following is the most precise device for measuring length :
(a) a vernier callipers with 20 divisions on the sliding scale
(b) a screw gauge of pitch 1 mm and 100 divisions on the circular scale
(c) an optical instrument that can measure length to within a wavelength of light ?

2.7 A student measures the thickness of a human hair by looking at it through a
microscope of magnification 100. He makes 20 observations and finds that the average
width of the hair in the field of view of the microscope is 3.5 mm. What is the
estimate on the thickness of hair ?

2.8 Answer the following :
(a)You are given a thread and a metre scale.  How will you estimate the diameter of

the thread ?
(b)A screw gauge has a pitch of 1.0 mm and 200 divisions on the circular scale. Do

you think it is possible to increase the accuracy of the screw gauge arbitrarily by
increasing the number of divisions on the circular scale ?

(c) The mean diameter of a thin brass rod is to be measured by  vernier callipers.  Why
is a set of 100 measurements of the diameter expected to yield a more reliable
estimate than a set of 5 measurements only ?

2.9 The photograph of a house occupies an area of 1.75 cm2 on a 35 mm slide.  The slide
is projected on to a screen, and the area of the house on the screen is 1.55 m2.  What
is the linear magnification of the projector-screen arrangement.

2.10 State the number of significant figures in the following :
(a)  0.007 m2

(b)  2.64 × 1024 kg
(c)  0.2370 g cm–3
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(d)  6.320 J
(e)  6.032 N m–2

(f)   0.0006032 m2

2.11 The length, breadth and thickness of a rectangular sheet of metal are 4.234 m, 1.005 m,
and 2.01 cm respectively. Give the area and volume of the sheet to correct significant
figures.

2.12 The mass of a box measured by a grocer’s balance is 2.300 kg. Two gold pieces of
masses 20.15 g  and 20.17 g are added to the box.  What is (a) the total mass of the
box, (b) the difference in the masses of the pieces to correct significant figures ?

2.13 A physical quantity P is related to four observables a, b, c and d as follows :

( )= 3 2P a b / c d

The percentage errors of measurement in a, b, c and d are 1%, 3%, 4% and 2%,
respectively. What is the percentage error in the quantity P ?  If the value of P calculated
using the above relation turns out to be 3.763, to what value should you round off
the result ?

2.14 A book with many printing errors contains four different formulas for the displacement
y of a particle undergoing a certain periodic motion :
(a) y = a sin 2π t/T

(b) y = a sin vt

(c) y = (a/T) sin t/a

(d) y a t T t T= ( )2  (sin 2 / +  cos 2 / )π π
(a = maximum displacement of the particle, v = speed of the particle.  T = time-period
of motion). Rule out the wrong formulas on dimensional grounds.

2.15 A famous relation in physics relates ‘moving mass’ m to the ‘rest mass’ mo of a
particle in terms of its speed v and the speed of light, c.  (This relation first arose as
a consequence of special relativity due to Albert Einstein). A boy recalls the relation
almost correctly but forgets where to put the constant c.  He writes :

( )
m

m

1 v

0=
− 2 1/2 .

Guess where to put the missing c.

2.16 The unit of length convenient on the atomic scale is known as an angstrom and is
denoted by Å: 1 Å = 10–10 m. The size of a hydrogen atom is about 0.5 Å. What is the
total  atomic volume in m3 of a mole of hydrogen atoms ?

2.17 One mole of an ideal gas at standard temperature and pressure occupies 22.4 L
(molar volume). What is the ratio of molar volume to the atomic volume of a mole of
hydrogen ?   (Take the size of  hydrogen molecule to be about 1 Å). Why is this ratio
so large ?

2.18 Explain this common observation clearly : If you look out of the window of a fast
moving train, the nearby trees, houses etc. seem to move rapidly in a direction opposite
to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.)
seem to be stationary. (In fact, since you  are aware that you are moving, these
distant objects seem to move with you).

2.19 The principle of ‘parallax’ in section 2.3.1 is used in the determination of distances
of very distant stars. The baseline AB is the line joining the Earth’s two locations six
months apart in its orbit around the Sun.  That is, the baseline is about the diameter
of the Earth’s orbit  ≈ 3 × 1011m. However, even the nearest stars are so distant that
with such a long baseline, they show parallax only of the order of 1” (second) of arc
or so. A parsec is a convenient unit of length on the astronomical scale.  It is the
distance of an object that will show a parallax of 1” (second of arc) from opposite
ends of a baseline equal to the distance from the Earth to the Sun. How much is a
parsec in terms of metres ?
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2.20 The nearest star to our solar system is 4.29 light years away. How much is this
distance  in terms of parsecs?  How much parallax would this star (named Alpha
Centauri) show when viewed  from two locations of the Earth six months apart in its
orbit around the Sun ?

2.21 Precise measurements of physical quantities are a need of science.  For example, to
ascertain the speed of an aircraft, one must have an accurate method to find its
positions at closely separated instants of time. This was the actual motivation behind
the discovery of radar in World War II. Think of different examples in modern science
where precise measurements of length, time, mass etc. are needed. Also, wherever
you can, give a quantitative idea of the precision needed.

2.22 Just as precise measurements are necessary in science, it is equally important to be
able to make rough estimates of quantities using rudimentary ideas and common
observations. Think of ways by which you can estimate the following (where an
estimate is difficult to obtain, try to get an upper bound on the quantity) :
(a) the total mass of rain-bearing clouds over India during the Monsoon
(b) the mass of an elephant
(c) the wind speed during a storm
(d) the number  of strands of hair on  your head
(e) the number of air molecules in your classroom.

2.23 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding
107 K, and its outer surface at a temperature of about 6000 K. At these high
temperatures, no substance remains in a solid or liquid phase. In what range do you
expect the mass density of the Sun to be, in the range of densities of solids and
liquids or gases ?  Check if your guess is correct from the following data : mass of the
Sun = 2.0 ×1030 kg, radius of the Sun = 7.0 × 108 m.

2.24 When the planet Jupiter is at a distance of 824.7 million kilometers from the Earth,
its  angular diameter is measured to be 35.72” of arc. Calculate the diameter of
Jupiter.

Additional Exercises

2.25 A man walking briskly in rain with speed v must slant his umbrella forward making
an angle θ with the vertical. A student derives the following relation between θ  and
v :  tan θ  = v and checks that the relation has a correct limit: as v → 0, θ →0, as
expected. (We are assuming there is no strong wind and that the rain falls vertically
for a stationary man). Do you think this relation can be correct ? If not, guess the
correct relation.

2.26 It is claimed that two cesium clocks, if allowed to run for 100 years, free from any
disturbance, may differ by only about 0.02 s. What does this imply for the accuracy
of the standard cesium clock in measuring a time-interval of 1 s ?

2.27 Estimate the average mass density of a sodium atom assuming its size to be about
2.5 Å. (Use the known values of Avogadro’s number and the atomic mass of sodium).
Compare it with the mass density of sodium in its crystalline phase : 970 kg m–3. Are
the two densities of the same order of magnitude ? If so, why ?

2.28 The unit of length convenient on the nuclear scale is a fermi : 1 f = 10–15 m. Nuclear
sizes obey roughly the following empirical relation :

r = r
0
 A1/3

where r is the radius of the nucleus, A its mass number, and r
o
 is a constant equal to

about, 1.2 f. Show that the rule implies that nuclear mass density is nearly constant
for different nuclei. Estimate the mass density of sodium nucleus. Compare it with
the average mass density of a sodium atom obtained in Exercise. 2.27.

2.29 A LASER is a source of very intense, monochromatic, and unidirectional beam of
light. These properties of a laser light can be exploited to measure long distances.
The distance of the Moon from the Earth has been already determined very precisely
using a laser as a source of light.  A laser light beamed at the Moon takes 2.56 s to
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return after reflection at the Moon’s surface.  How much is the radius of the lunar
orbit around the Earth ?

2.30 A SONAR (sound navigation and ranging) uses ultrasonic waves to detect and locate
objects under water. In a submarine equipped with a  SONAR, the time delay between
generation of a probe wave and the reception of its echo after reflection from an
enemy submarine is found to be 77.0 s.  What is the distance of the enemy submarine?
(Speed of sound in water = 1450 m s–1).

2.31 The farthest objects in our Universe discovered by modern astronomers are so distant
that light emitted by them takes billions of years to reach the Earth.  These objects
(known as quasars) have many puzzling features, which have not yet been satisfactorily
explained. What is the distance in km of a quasar from which light takes 3.0 billion
years to reach us ?

2.32 It is a well known fact that during a total solar eclipse the disk of the moon almost
completely covers the disk of the Sun.  From this fact and from the information you
can gather from examples 2.3 and 2.4, determine the approximate diameter of the
moon.

2.33 A great physicist of this century (P.A.M. Dirac) loved playing with numerical values of
Fundamental constants of nature. This led him to an interesting observation.  Dirac
found that from the basic constants of atomic physics (c, e, mass of electron, mass of
proton) and the gravitational constant G, he could arrive at a number with the
dimension of time. Further, it was a very large number, its magnitude being close to
the present estimate on the age of the universe (~15 billion years). From the table of
fundamental constants in this book, try to see if you too can construct this number
(or any other interesting number you can think of ). If its coincidence with the age of
the universe were significant, what would this imply for the constancy of fundamental
constants?
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CHAPTER THREE

MOTION IN A STRAIGHT LINE

3.1 Introduction

3.2 Position, path length and

displacement

3.3 Average velocity and average

speed

3.4 Instantaneous velocity and

speed

3.5 Acceleration

3.6 Kinematic equations for

uniformly accelerated motion

3.7 Relative velocity

Summary

Points to ponder

Exercises

Additional exercises

Appendix 3.1

3.1  INTRODUCTION

Motion is common to everything in the universe. We walk,

run and ride a bicycle.  Even when we are sleeping, air moves

into and out of our lungs and blood flows in arteries and

veins.  We see leaves falling from trees and water flowing

down a dam.  Automobiles and planes carry people from one

place to the other. The earth rotates once every twenty-four

hours and revolves round the sun once in a year. The sun

itself is in motion in the Milky Way, which is again moving

within its local group of galaxies.

Motion is change in position of an object with time. How

does the position change with time ? In this chapter, we shall

learn how to describe motion. For this, we develop the

concepts of velocity and acceleration. We shall confine

ourselves to the study of motion of objects along a straight

line, also known as rectilinear motion. For the case of

rectilinear motion with uniform acceleration, a set of simple

equations can be obtained. Finally, to understand the relative

nature of motion, we introduce the concept of relative velocity.

In our discussions, we shall treat the objects in motion as

point objects. This approximation is valid so far as the size

of the object is much smaller than the distance it moves in a

reasonable duration of time.  In a good number of situations

in real-life, the size of objects can be neglected and they can

be considered as point-like objects without much error.

In Kinematics, we study ways to describe motion without

going into the causes of motion. What causes motion

described in this chapter and the next chapter forms the

subject matter of Chapter 5.

3.2  POSITION, PATH LENGTH AND DISPLACEMENT

Earlier you learnt that motion is change in position of an

object with time. In order to specify position, we need to use

a reference point and a set of axes. It is convenient to choose
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with the path of the car’s motion and origin of
the axis as the point from where the car started
moving, i.e. the car was at x = 0 at t = 0 (Fig. 3.1).
Let P, Q and R represent the positions of the car
at different instants of time.  Consider two cases
of motion.  In the first case, the car moves from
O to P.  Then the distance moved by the car is
OP = +360 m. This distance is called the path
length  traversed by the car.   In the second
case, the car moves from O to P and then moves
back from P to Q.   During this course of motion,
the path length traversed is OP + PQ = + 360 m
+ (+120 m) = + 480 m.  Path length is a scalar
quantity — a quantity that has a magnitude
only and no direction (see Chapter 4).

Displacement

It is useful to define another quantity
displacement  as  the  change  in position. Let
x

1
 and x

2
 be the positions of an object at time t

1

and t
2
. Then its displacement, denoted by ∆x, in

time ∆t = (t
2 

- t
1
), is given by the difference

between the final and initial positions :
                       ∆x = x

2 
– x

1

(We use the Greek letter delta (∆) to denote a
change in a quantity.)

If   x
2
 > x

1
, ∆x is positive; and if x

2 
< x

1
,
 
∆x is

negative.
Displacement has both magnitude and

direction. Such quantities are represented by
vectors. You will read about vectors in the next
chapter. Presently, we are dealing with motion
along a straight line (also called rectilinear
motion) only. In one-dimensional motion, there
are only two directions (backward and forward,
upward and downward) in which an object can
move, and these two directions can easily be
specified by + and – signs. For example,
displacement of the car in moving from O to P is :

∆x = x
2
 – x

1
 = (+360 m) – 0 m = +360 m

The displacement has a magnitude of 360 m and

is directed in the positive x direction as indicated
by the + sign. Similarly, the displacement of the

car from P to Q is 240 m – 360 m = – 120 m. The

Fig. 3.1  x-axis, origin and positions of a car at different times.

a rectangular coordinate system consisting of

three mutually perpenducular axes, labelled  X-,

Y-, and Z- axes. The point of intersection of these

three axes is called origin (O) and serves as the

reference point. The coordinates (x, y. z) of an

object describe the position of the object with

respect to this coordinate system. To measure

time, we position a clock in this system. This

coordinate system along with a clock constitutes

a frame of reference.

If one or more coordinates of an object change

with time, we say that the object is in motion.

Otherwise, the object is said to be at rest with

respect to this frame of reference.

The choice of a set of axes in a frame of

reference depends upon the situation. For

example, for describing motion in one dimension,

we need only one axis. To describe motion in

two/three dimensions, we need a set of two/

three axes.

Description of an event depends on the frame

of reference chosen for the description. For

example, when you say that a car is moving on

a road, you are describing the car with respect

to a frame of reference attached to you or to the

ground. But with respect to a frame of reference
attached with a person sitting in the car, the

car is at rest.

To describe motion along a straight line, we

can choose an axis, say X-axis, so that it

coincides with the path of the object. We then
measure the position of the object with reference
to a conveniently chosen origin, say O, as shown
in Fig. 3.1. Positions to the right of O are taken
as positive and to the left of O, as negative.
Following this convention, the position
coordinates of point P and Q in Fig. 3.1 are +360
m and +240 m. Similarly, the position coordinate
of point R is –120 m.

Path length

Consider the motion of a car along a straight
line.  We choose the x-axis such that it coincides
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negative sign indicates the direction of
displacement. Thus, it is not necessary to use
vector notation for discussing motion of objects
in one-dimension.

The magnitude of displacement may or may
not be equal to the path length traversed by
an object.  For example, for motion of the car
from O to P, the path length is  +360 m and the
displacement is +360 m. In this case, the
magnitude of displacement (360 m) is equal to
the path length (360 m). But consider the motion
of the car from O to P and back to Q. In this
case, the path length = (+360 m) + (+120 m) = +
480 m. However, the displacement = (+240 m) –
(0 m) =  + 240 m.  Thus, the magnitude of
displacement (240 m) is not equal to the path
length (480 m).

The magnitude of the displacement for a
course of motion may be zero but the
corresponding path length is not zero.  For
example, if the car starts from O, goes to P and

then returns to O, the final position coincides

with the initial position and the displacement

is zero. However, the path length of this journey

is OP + PO = 360 m +  360 m = 720 m.

Motion of an object can be represented by a

position-time graph as you have already learnt

about it. Such a graph is a powerful tool to

represent and analyse different aspects of

motion of an object.  For motion along a straight

line, say X-axis, only x-coordinate varies with

time and we have an x-t graph. Let us first

consider the simple case in which an object is

stationary, e.g. a car standing still at x = 40 m.

The position-time graph is a straight line parallel

to the time axis, as shown in Fig. 3.2(a).

If an object moving along the straight line

covers equal distances in equal intervals of

time, it is said to be in uniform motion along a

straight line. Fig. 3.2(b) shows the position-time

graph of such a motion.

Fig. 3.2  Position-time graph of (a) stationary object, and (b) an object in uniform motion.

Fig. 3.3  Position-time graph of a car.
t (s) �

#

x

(m)

2018-19



PHYSICS42

Now, let us consider the motion of a car that
starts from rest at time t = 0 s from the origin O
and picks up speed till t = 10 s and thereafter
moves with uniform speed till t = 18 s. Then the
brakes are applied and the car stops at
t = 20 s and x = 296 m. The position-time graph
for this case is shown in Fig. 3.3. We shall refer
to this graph in our discussion in the following
sections.

3.3  AVERAGE VELOCITY AND AVERAGE
SPEED

When an object is in motion, its position
changes with time.  But how fast is the position
changing with time and in what direction?  To
describe this, we define the quantity average
velocity. Average velocity is defined as the
change in position or displacement (∆x) divided
by the time intervals (∆t), in which the
displacement occurs :

     v
x x

t t

x

t

2 1

2 1

=
−

−
=

∆

∆
(3.1)

where x
2
  and x

1
 are the positions of the object

at time t
2
and  t

1
, respectively. Here the bar over

the symbol for velocity is a standard notation
used to indicate an average quantity.  The SI
unit for velocity is m/s or m s–1, although km h–1

is used in many everyday applications.
Like displacement, average velocity is also a

vector quantity. But as explained earlier, for
motion in a straight line, the directional aspect
of the vector can be taken care of by + and –
signs and we do not have to use the vector
notation for velocity in this chapter.

Fig. 3.4 The average velocity is the slope of line P
1
P

2
.

Consider the motion of the car in Fig. 3.3. The
portion of the x-t graph between t = 0 s and t = 8
s is blown up and shown in Fig. 3.4.  As seen
from the plot, the average velocity of the car
between time t = 5 s and t = 7 s is :

(((( ))))
(((( ))))

1–

12

12
sm  8.7

s 57

m 010427
====

−−−−

−−−−
====

−−−−

−−−−
====

..

tt

xx
v

Geometrically, this is the slope of the straight
line P

1
P

2
 connecting the initial position 

1
P  to

the final position P
2
   
as

   
shown in Fig. 3.4.

The average velocity can be positive or negative
depending upon the sign of the displacement. It
is zero if the displacement is zero. Fig. 3.5 shows
the x-t graphs for an object, moving with positive
velocity (Fig. 3.5a), moving with negative velocity
(Fig. 3.5b)  and at rest (Fig. 3.5c).

Average velocity as defined above involves
only the displacement of the object. We have seen
earlier that the magnitude of displacement may
be different from the actual path length. To
describe the rate of motion over the actual path,
we introduce another quantity called average
speed.

Average speed  is defined as the total path
length travelled divided by the total time
interval during which the motion has taken
place :

Average speed
Total path length

Total time interval 
=   (3.2)

Average speed has obviously the same unit
(m s–1) as that of velocity.  But it does not tell us
in what direction an object is moving.  Thus, it
is always positive (in contrast to the average
velocity which can be positive or negative). If the
motion of an object is along a straight line and
in the same direction, the magnitude of
displacement is equal to the total path length.
In that case, the magnitude of average velocity

Fig. 3.5 Position-time graph for an object (a) moving

with positive velocity, (b) moving with

negative velocity, and (c) at rest.
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t

is equal to the average speed.  This is not always
the case, as you will see in the following example.

Example 3.1 A car is moving along a
straight line, say OP in Fig. 3.1.  It moves
from O to P in 18 s and returns from P to Q
in 6.0 s.  What are the average velocity
and average speed of the car in going (a)
from O to P ? and (b) from O to P and back
to Q ?

Answer    (a)

 Average velocity
Displacement

Time interval 
=

   1+ 360 m 
20 m s

18 s
v −= = +

     Average speed  
Path length

Time interval
=

                
1360 m 

= 20 m s
18 s

−=

Thus, in this case the average speed is equal to
the magnitude of the average velocity.
(b) In this case,

( )
240 m

18 6.0  s

Displacement 
Average velocity =

Time interval 

+
=

+

                            -1=+10 ms

OP + PQPath length
Average speed = =

Time interval t∆

 
( ) -1360+120  m

= = 20 m s
24 s

Thus, in this case the average speed is not equal
to the magnitude of the average velocity. This
happens because the motion here involves
change in direction so that the path length is
greater than the magnitude of displacement.
This shows that speed is, in general, greater
than the magnitude of the velocity. t

If the car in Example 3.1 moves from O to P

and comes back to O in the same time interval,
average speed is 20 m/s but the average velocity
is zero !

3.4  INSTANTANEOUS VELOCITY AND SPEED

The average velocity tells us how fast an object
has been moving over a given time interval but
does not tell us how fast it moves at different
instants of time during that interval.  For this,
we define instantaneous velocity or simply
velocity v at an instant t.

The velocity at an instant is defined as the
limit of the average velocity as the time interval
∆t becomes infinitesimally small. In other words,

v lim
x

t
=

t  0∆ 

∆

∆→
(3.3a)

  =
d

d

x

t

(3.3b)

where the symbol 
lim

t 0∆ →
 stands for the operation

of taking limit as  ∆tg0 of the quantity on its
right. In the language of calculus, the quantity
on the right hand side of Eq. (3.3a) is the
differential coefficient of x with respect to t and

is denoted by 
 

d

d

x

t
 (see Appendix 3.1).  It is the

rate of change of position with respect to time,

at that instant.

We can use Eq. (3.3a) for obtaining the value
of velocity at an instant either graphically or
numerically. Suppose that we want to obtain
graphically the value of velocity at time  t = 4 s
(point P) for the motion of the car represented
in Fig. 3.3. The figure has been redrawn in
Fig. 3.6 choosing different scales to facilitate the

Fig. 3.6 Determining velocity from position-time

graph.  Velocity at t = 4 s is the slope of the

tangent to the graph at that instant.
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calculation. Let us take ∆t = 2 s centred at
t = 4 s. Then, by the definition of the average
velocity, the slope of line P1P2  ( Fig. 3.6) gives
the value of average velocity over the interval
3 s to 5 s.  Now, we decrease the value of ∆t from
2 s to 1 s.  Then line P1P2 becomes Q1Q2   and its
slope gives the value of the average velocity over
the interval 3.5 s to 4.5 s. In the limit ∆t → 0,
the line P

1
P

2
 becomes tangent to the position-

time curve at the point P and the velocity at t =
4 s is given by the slope of the tangent at that
point. It is difficult to show this process
graphically. But if we use numerical method
to obtain the value of the velocity, the
meaning of the limiting process becomes
clear. For the graph shown in
Fig. 3.6, x = 0.08 t3.  Table 3.1 gives the value of
∆x/∆t calculated for ∆t equal to 2.0 s, 1.0 s, 0.5
s, 0.1 s and 0.01 s centred at t = 4.0 s. The
second and third columns give the value of t

1
=

t
t

2
−











∆
 and t t

t

2
2 = +











∆
 and the fourth and

the fifth columns give the corresponding values

of x, i.e. x (t
1
) = 0.08 t

1

3
 and x (t

2
) = 0.08 t2

3. The
sixth column lists the difference ∆x = x (t

2
) – x

(t
1
) and the last column gives the ratio of ∆x and

∆t, i.e. the average velocity corresponding to the
value of ∆t listed in the first column.

We see from Table 3.1 that as we decrease
the value of ∆t from 2.0 s to 0.010 s, the value of
the average velocity approaches the limiting
value 3.84 m s–1 which is the value of velocity at

t = 4.0 s, i.e. the value of  
d

d

x

t
 at t = 4.0 s. In this

manner, we can calculate velocity at each

instant for motion of the car shown in Fig. 3.3.
For this case, the variation of velocity with time
is found to be as shown in Fig. 3.7.

Fig. 3.7 Velocity–time graph corresponding to motion

shown in Fig. 3.3.

The graphical method for the determination
of the instantaneous velocity is always not a
convenient method.  For this, we must carefully
plot the position–time graph and calculate the
value of average velocity as ∆t becomes smaller
and smaller.  It is easier to calculate the value
of velocity at different instants if we have data
of positions at different instants or exact
expression for the position as a function of time.
Then, we calculate ∆x/∆t from the data for
decreasing the value of ∆t and find the limiting
value as we have done in Table 3.1 or use
differential calculus for the given expression and

calculate 
d

d

x

t
 at different instants as done in

the following example.

Table 3.1  Limiting value of 
∆

∆

x

t
 at t = 4 s
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t

Example 3.2    The position of an object

moving along x-axis is given by   x = a + bt2

where  a = 8.5 m, b = 2.5 m s–2 and t is

measured in seconds. What is its velocity at

t = 0 s and t = 2.0 s. What is the average

velocity between t = 2.0 s and t = 4.0 s ?

Answer  In notation of differential calculus, the
velocity is

( )v
x

t t
a bt 2b t =  

2
= = + =

d

d

d

d
5.0 t m s

-1
 

At   t = 0 s,      v = 0 m s–1   and at   t = 2.0 s,
v = 10 m s-1 .

( ) ( )4.0 2.0

4.0 2.0

x x
Average velocity

−
=

−

        
16 – – 4

6.0
2.0

a b a b
b

+
= = ×

        -16.0 2.5 =15 m s= ×             t

From Fig. 3.7, we note that during the period
t =10 s to 18 s the velocity is constant. Between
period t =18 s to t = 20 s, it is uniformly
decreasing  and  during  the  period t = 0 s to     t
= 10 s, it is increasing. Note that for uniform
motion, velocity is the same as the average
velocity at all instants.

Instantaneous speed or simply speed is the
magnitude of velocity. For example, a velocity of
+ 24.0 m s–1 and a velocity of – 24.0 m s–1 — both
have an associated speed of 24.0 m s-1.  It should
be noted that though average speed over a finite
interval of time is greater or equal to the
magnitude of the average velocity,
instantaneous speed at an instant is equal to
the magnitude of the instantaneous velocity at
that instant. Why so ?

3.5  ACCELERATION

The velocity of an object, in general, changes
during its course of motion. How to describe this
change? Should it be described as the rate of
change in velocity with distance or with time ?
This was a problem even in Galileo’s time. It was
first thought that this change could be described
by the rate of change of velocity with distance.
But, through his studies of motion of freely falling
objects and motion of objects on an inclined
plane, Galileo concluded that the rate of change
of velocity with time is a constant of motion for
all objects in free fall. On the other hand, the
change in velocity with distance is not constant
– it decreases with the increasing distance of fall.

This led to the concept of acceleration as the rate
of change of velocity with time.

 The average acceleration a  over a time

interval is defined as the change of velocity
divided by the time interval :

2 1

2 1

–

–

v v va
t t t

∆
= =

∆ (3.4)

where v2 and v1 are the instantaneous velocities
or simply velocities at time  t2

 
and t1

 
. It is the

average change of velocity per unit time. The SI
unit of acceleration is m s–2 .

On a plot of velocity versus time, the average
acceleration is the slope of the straight line
connecting the points corresponding to (v2, t2)
and (v1, t1). The average acceleration
for     velocity-time graph shown in Fig. 3.7 for
different time intervals 0 s - 10 s, 10 s – 18 s,
and 18 s – 20 s are :

0 s - 10 s
( )

( )

–1
–224 – 0 m s

2.4 m s
10 – 0 s

a = =

10 s - 18 s   
( )

( )

–1
–224 – 24 m s

0 m s
18 – 10 s

a = =

18 s - 20 s    
( )

( )

–1
–20 – 24 m s

– 12 m s
20 – 18 s

a = =

Fig. 3.8 Acceleration as a function of time for motion

represented in Fig. 3.3.

Instantaneous acceleration is defined in the same
way as the instantaneous velocity :

d

dt 0

v v
a lim

t t∆ →

∆
= =

∆
(3.5)

The acceleration at an instant is the slope of
the tangent to the v–t curve at that instant.  For
the v–t curve shown in  Fig.  3.7, we can obtain
acceleration at every instant of time. The
resulting a – t curve is shown in Fig. 3.8. We see

 a
 (
m

 s
–
2
)
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that the acceleration is nonuniform over the
period  0 s to 10 s. It is zero between 10 s and
18 s and is constant with value –12 m s–2

between 18 s and 20 s. When the acceleration
is uniform, obviously, it equals the average
acceleration over that period.

Since velocity is a quantity having both
magnitude and direction, a change in velocity
may involve either or both of these factors.
Acceleration, therefore, may result from a
change in speed (magnitude), a change in
direction or changes in both.  Like velocity,
acceleration can also be positive, negative or
zero.  Position-time graphs for motion with
positive, negative and zero acceleration are
shown in Figs. 3.9 (a), (b) and (c), respectively.
Note that the graph curves upward for positive
acceleration; downward for negative
acceleration and it is a straight line for zero
acceleration. As an exercise, identify in Fig. 3.3,
the regions of the curve that correspond to these
three cases.

Although acceleration can vary with time,
our study in this chapter will be restricted to
motion with constant acceleration. In this case,
the average acceleration equals the constant
value of acceleration during the interval. If the
velocity of an object is v

o
 at t = 0 and v at time t,

we have

          or
0

0
0

v v
a   ,  v v a t

t

−
= = +

−
(3.6)

Fig. 3.9 Position-time graph for motion with

(a) positive acceleration; (b) negative

acceleration, and (c) zero acceleration.

Let us see how velocity-time graph looks like
for some simple cases. Fig. 3.10 shows     velocity-
time graph for motion with constant acceleration
for the following cases :

(a) An object is moving in a positive direction
with a positive acceleration, for example
the motion of the car in  Fig. 3.3 between
t = 0 s and t = 10 s.

(b) An object is moving in positive direction
with a negative acceleration, for example,
motion of the car in Fig 3.3 between
t = 18 s and 20 s.

(c) An object is moving in negative direction
with a negative acceleration, for example
the motion of a car moving from O in Fig.
3.1 in negative x-direction with
increasing speed.

(d) An object is moving in positive direction
till time t1

, and then turns back with the
same negative acceleration, for example
the motion of a car from point O to point
Q in Fig. 3.1 till time t1 with decreasing
speed and turning back and moving with
the same negative acceleration.

An interesting feature of a velocity-time graph
for any moving object is that the area under the
curve represents the displacement over a
given time interval. A general proof of this

Fig. 3.10 Velocity–time graph for motions with

constant acceleration. (a) Motion in positive

direction with positive acceleration,

(b) Motion in positive direction with

negative acceleration, (c) Motion in negative

direction with negative acceleration,

(d) Motion of an object with negative

acceleration that changes direction at time

t
1
.  Between times 0 to t

1
, its moves in

positive x - direction and between t
1
 and

t
2
 it moves in the opposite direction.
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statement requires use of calculus. We can,
however, see that it is true for the simple case of
an object moving with constant velocity u. Its
velocity-time graph is as shown in Fig. 3.11.

Fig. 3.11 Area under v–t curve equals displacement

of the object over a given time interval.

The v-t curve is
 
a straight line parallel to the

time axis and the area under it between t = 0
and t = T

  
is the area of the rectangle of height u

and base T. Therefore, area = u × T = uT which
is the displacement in this time interval.  How
come in this case an area is equal to a distance?
Think!  Note the dimensions of quantities on
the two coordinate axes, and you will arrive at
the answer.

Note that the x-t, v-t, and a-t graphs shown
in several figures in this chapter have sharp
kinks at some points implying that the
functions are not differentiable at these
points. In any realistic situation, the
functions will be differentiable at all points
and the graphs will be smooth.

What this means physically is that
acceleration and velocity cannot change
values abruptly at an instant. Changes are
always continuous.

3.6 KINEMATIC EQUATIONS FOR
UNIFORMLY ACCELERATED MOTION

For uniformly accelerated motion, we can derive
some simple equations that relate displacement
(x), time taken (t), initial velocity (v

0
), final

velocity (v) and acceleration (a). Equation (3.6)
already obtained gives a relation between final
and initial velocities v and  v

0  
of an object moving

with uniform acceleration
 
a :

             v = v
0
 + at (3.6)

This relation is graphically represented in Fig. 3.12.
The area under this curve is :
Area between instants 0 and t = Area of triangle
ABC + Area of rectangle OACD

 
( )– 0 0

1
v v t + v t

2
=

Fig. 3.12 Area  under v-t curve for an object with

uniform acceleration.

As explained in the previous section, the area
under v-t curve represents the displacement.
Therefore, the displacement x of the object is :

( )1
–

2
0 0x v v t + v t= (3.7)

But v v a t0− =

Therefore,
2

0

1

2
x a t + v t=

or,
2

0

1

2
x v t at= + (3.8)

Equation (3.7) can also be written as

0

2

v + v
x t v t= = (3.9a)

where,

0

2

v v
v

+
=   (constant acceleration only)

(3.9b)

Equations (3.9a) and  (3.9b) mean that the object
has undergone displacement x with an average
velocity equal to the arithmetic average of the
initial and final velocities.
From Eq. (3.6), t = (v – v

0
)/a. Substituting this in

Eq. (3.9a), we get

       x v t
v v v v

a

v v

a
= =

+





−





=
−0 0

2
0
2

2 2

     2 2
0 2v v ax= + (3.10)
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t

This equation can also be obtained by
substituting the value of t from Eq. (3.6) into
Eq. (3.8). Thus, we have obtained three
important equations :

0v v at= +

         
2

0

1

2
x v t at= +

2 2
0 2v v ax= + (3.11a)

connecting five quantities v0,  v, a, t and x.  These
are kinematic equations of rectilinear motion
for constant acceleration.

The set of Eq. (3.11a) were obtained by
assuming that at t = 0, the position of the
particle, x is 0.  We can obtain a more general
equation if we take  the  position coordinate at t
= 0 as non-zero, say x

0
.  Then Eqs. (3.11a) are

modified (replacing x by x – x
0
 ) to :

0v v at= +

2
0 0

1

2
x x v t at= + + (3.11b)

2 2
0 02 ( )v v a x x= + − (3.11c)

Example 3.3 Obtain equations of motion
for constant acceleration using method of
calculus.

Answer  By definition

d

d

v
a

t
=

 dv = a dt

Integrating both sides

d dv a t
v

v t

0 0∫ ∫=

= ∫a t
t

d
0

         (a is constant)

0–v v at=

       0v v at= +

Further,        
d

d

x
v

t
=

      dx = v dt

Integrating both sides

dx
x

x

0
∫ = ∫ v t

t

d
0

= +( )∫ v at t
t

0
0

d

2
0 0

1
–

2
x x v t a t= +

      x   = 
2

0 0

1

2
x v t a t+ +

We can write

d d d d

d d d d

v v x v
a v

t x t x
= = =

or, v dv = a dx

Integrating both sides,

v v a x
v

v

x

x

d d
0 0

∫ ∫=

( )
2 2

0
0

–
–

2

v v
a x x=

( )2 2
0 02 –v v a x x= +

The advantage of this method is that it can be

used for motion with non-uniform acceleration

also.

Now, we shall use these equations to some
important cases. t

Example 3.4 A ball is thrown vertically
upwards with a velocity of 20 m s–1 from
the top of a multistorey building. The
height of the point from where the ball is
thrown is 25.0 m from the ground. (a) How
high will the ball rise ?  and (b) how long
will it be before the ball hits the ground?
Take g = 10 m s–2.

Answer  (a) Let us take the y-axis in the

vertically upward direction with zero at the

ground, as shown in Fig. 3.13.

Now  v
o
 
= + 20 m s–1,

   a  =  – g = –10 m s–2,

   v  =  0 m s–1

If the ball rises to height y from the point of

launch, then using the equation

( )0   2 2
0v v 2 a y – y= +

we get

0 = (20)2 + 2(–10)(y – y
0
)

Solving,  we get, (y – y
0
) = 20 m.

(b) We can solve this part of the problem in two

ways.  Note carefully the methods used.

t
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t

Fig. 3.13

FIRST METHOD :  In the first method, we split
the path in two parts : the upward motion  (A to
B) and the downward motion (B to C) and
calculate the corresponding time taken t

1
 and

t
2
.  Since the velocity  at B is zero, we have :
                  v  =  v

o
 +  at

0 = 20  – 10t
1

Or,            t
1 
= 2 s

This is the time in going from A to B.  From B, or
the point of  the maximum height, the ball falls
freely under the acceleration due to gravity.  The
ball is moving in negative y direction.  We use
equation

          
2

0 0

1

2
y y v t at= + +

We have, y
0
 = 45 m, y = 0, v

0
 = 0, a = – g  = –10 m s–2

   0  =  45 + (½) (–10) t
2

2

Solving, we get t
2
 = 3 s

Therefore, the total time taken by the ball before
it hits the ground = t

1 
+

   
t
2
  = 

 
2

  
s

 
+ 3 s = 5 s.

SECOND METHOD : The total time taken can
also be calculated by noting the coordinates of
initial and final positions of the ball with respect
to the origin chosen and using equation

2
0 0

1

2
y y v t at= + +

Now y
0  

=
  
25 m        y = 0 m

v
o
 = 20 m s-1, a  = –10m s–2,  t  =  ?

0 = 25  +20 t  + (½)  (-10) t2

Or, 5t2 – 20t  – 25  =  0

Solving this quadratic equation for t, we get

t = 5s

Note that the second method is better since we
do not have to worry about the path of the motion
as the motion is under constant acceleration.

  t

Example 3.5  Free-fall : Discuss the
motion of an object under free  fall.  Neglect
air resistance.

Answer  An object released near the surface of
the Earth is accelerated downward under the
influence of the force of gravity. The magnitude
of acceleration due to gravity is represented by
g.  If air resistance is neglected, the object is
said to be in free fall. If the height through
which the object falls is small compared to the
earth’s radius, g can be taken to be constant,
equal to   9.8 m s–2. Free fall is thus a case of
motion with uniform acceleration.

We assume that the motion is in y-direction,
more correctly in –y-direction because we
choose upward direction as positive. Since the
acceleration due to gravity is always downward,
it is in the negative direction and we have

a = – g  = – 9.8 m s–2

The object is released from rest at y = 0. Therefore,
v

0
 = 0 and the equations of motion become:

v =  0 – g t       = –9.8 t      m s–1

y =  0 – ½  g t2   = –4.9 t 2    m
v2 = 0 – 2 g y     = –19.6 y   m2 s–2

These equations give the velocity and the
distance travelled as a function of time and also
the variation of velocity with distance. The
variation of acceleration, velocity, and distance,
with time have been plotted in Fig.  3.14(a), (b)
and (c).

(a)
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(b)

      (c)

Fig. 3.14 Motion of an object under free fall.
(a)  Variation of acceleration with time.
(b) Variation of velocity with time.

(c) Variation of distance with time t

Example 3.6 Galileo’s law of odd
numbers : “The distances traversed, during

equal intervals    of time, by a body falling

from rest, stand to one another in the same

ratio as the odd numbers beginning with

unity [namely, 1: 3: 5: 7…...].”  Prove it.

Answer  Let us divide the time interval of
motion of an object under free fall into many
equal intervals

 
τ   and find out the distances

traversed during successive intervals of
time. Since initial velocity is zero, we have

Using this equation, we can calculate the

position of the object after different time

intervals, 0, τ, 2τ,  3τ… which are given in

second column of Table 3.2. If we take

(–1/
 
2) gτ2 as y

0 
— the position coordinate after

first time interval τ, then third column gives

the positions in the unit of y
o
. The fourth

column gives the distances traversed in

successive τs. We find that the distances are

in the simple ratio 1: 3: 5: 7: 9: 11… as  shown

in the last column. This  law was established

by Galileo Galilei (1564-1642) who was the first

to make quantitative studies of free fall. t

Example 3.7  Stopping distance of
vehicles : When brakes are applied to a
moving vehicle, the distance it travels before
stopping is called stopping distance.  It is
an important factor for road safety and
depends on the initial velocity (v

0
) and the

braking capacity, or deceleration, –a that
is caused by the braking. Derive an
expression for stopping distance of a vehicle
in terms of v

o
 and

 
a.

Answer  Let the distance travelled by the vehicle
before it stops be d

s
. Then, using equation of

motion  v2 = v
o
2 + 2 ax, and noting that  v = 0, we

have the stopping distance

d
v

a
s =

– 0
2

2

Thus, the stopping distance is proportional to
the square of the initial velocity. Doubling the

t

Table 3.2

y gt= −
1

2
2
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t

initial velocity increases the stopping distance
by a factor of 4 (for the same deceleration).

For  the car of a particular make, the braking
distance was found to be 10 m, 20 m, 34 m and
50 m corresponding to velocities of 11, 15, 20
and 25 m/s which are nearly consistent with
the above formula.

Stopping distance is an important factor
considered in setting speed limits, for example,
in school zones. t

Example 3.8  Reaction time :  When a
situation demands our immediate
action, it takes some time before we
really respond. Reaction time is the
time a person takes to observe, think
and act.  For example, if a person is
driving and suddenly a boy appears on
the road, then the time elapsed before
he slams the brakes of the car is the
reaction time. Reaction time depends
on complexity of the situation and on
an individual.

You can measure your reaction time
by a simple experiment. Take a ruler
and ask your friend to drop it vertically
through the gap between your thumb
and forefinger (Fig. 3.15). After you
catch it, find the distance d travelled
by the ruler. In a particular case, d was
found to be 21.0 cm. Estimate reaction
time.

Or,

Given d = 21.0 cm and g = 9.8 m s–2  the reaction
time is

t

3.7  RELATIVE VELOCITY

You must be familiar with the experience of
travelling in a train and being overtaken by
another train moving in the same direction as
you are. While that train must be travelling faster
than you to be able to pass you, it does seem
slower to you than it would be to someone
standing on the ground and watching both the
trains. In case both the trains have the same
velocity with respect to the ground, then to you
the other train would seem to be not moving at
all.  To understand such observations, we now
introduce the concept of relative velocity.

Consider two objects A and B moving
uniformly with average velocities v

A
 and v

B
 in

one dimension, say along x-axis. (Unless
otherwise specified, the velocities mentioned in
this chapter are measured with reference to the
ground). If x

A
 (0) and x

B
 (0) are positions of objects

A and B, respectively at time t = 0, their positions
x

A
 (t) and x

B
 (t) at time t are given by:

x
A
 (t )  =  x

A
 (0)  +  v

A
  t     (3.12a)

x
B
 (t)   =  x

B
 (0)  +  v

B
 t               (3.12b)

Then, the displacement from object A to object
B is given by

x
BA

(t)  =  x
B
 (t)  –  x

A
 (t)

= [ x
B
 (0) – x

A
 (0) ] + (v

B
 – v

A
) t.      (3.13)

Equation (3.13) is easily interpreted. It tells us
that as seen from object A, object B has a
velocity v

B 
– v

A
 because the displacement from

A to B changes steadily by the amount v
B 
– v

A
 in

each unit of time. We say that the velocity of
object B relative to object A is v

B
 – v

A
 :

v
BA

  =  v
B 
 – v

A
(3.14a)

Similarly, velocity of object A relative to object B

is:
v

AB
  =  v

A
 – v

B
(3.14b)

Fig. 3.15   Measuring the reaction time.

Answer  The ruler drops under free fall.
Therefore, v

o
 = 0, and a = – g = –9.8 m s–2. The

distance travelled d and the reaction time t
r
 are

related by
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This shows: v
BA 

= – v
AB

(3.14c)

Now we consider some special cases :

(a) If v
B
 = v

A
, v

B 
–

 
v

A
  = 0.  Then, from Eq. (3.13), x

B

(t) – x
A
 (t) = x

B
 (0) – x

A
 (0).  Therefore, the two

objects stay at a constant distance (x
B
 (0) – x

A

(0)) apart, and their position–time graphs are

straight lines parallel to each other as shown

in Fig. 3.16. The relative velocity v
AB

 or v
BA

 is

zero in this case.

(b) If v
A
 > v

B
, v

B
 – v

A
 is negative.  One graph is

steeper than the other and they meet at a

common point.  For example, suppose v
A 
 = 20 m s-1

and x
A
 (0) = 10 m; and v

B
 = 10 m s-1, x

B
 (0) = 40

m; then the time at which they meet is t = 3 s

(Fig. 3.17). At this instant they are both at a

position x
A
 (t) = x

B
 (t) = 70 m. Thus, object A

overtakes object B at this time. In this case,v
BA

= 10 m s–1 – 20 m s–1 = – 10 m s–1=– v
AB

.

(c) Suppose v
A
 and v

B
 are of opposite signs. For

example, if in the above example object A is

moving with 20 m s–1 starting at  x
A
(0) = 10 m

and object B is moving with – 10 m s–1 starting

at x
B
 (0) = 40 m,  the two objects meet at t = 1 s

(Fig. 3.18).  The velocity of B relative to A,

v
BA

 = [–10 – (20)] m s–1 = –30 m s–1 = – v
AB

. In this

case, the magnitude of v
BA

 or v
AB

 ( = 30 m s–1) is

greater than the magnitude of velocity of A or

that of B.  If the objects under consideration are

two trains, then for a person sitting on either of

the two, the other train seems to go very fast.

Note that Eq. (3.14) are valid even if v
A
 and v

B

represent instantaneous velocities.

Example 3.9  Two parallel rail tracks run
north-south.  Train A moves north with a
speed of 54 km h–1, and train B moves south
with a speed of 90 km h–1. What is the
(a) velocity of B with respect to A ?,
(b) velocity of ground with respect to B ?,

and
(c) velocity of a monkey running on the

roof of the train A against its motion
(with a velocity of 18 km h–1 with
respect to the train A) as observed by
a man standing on the ground ?

Answer  Choose the positive direction of x-axis
to be from south to north.  Then,

Fig. 3.16 Position-time graphs of two objects with

equal velocities.

Fig. 3.17 Position-time graphs of two objects with

unequal velocities, showing the time of

meeting.

Fig. 3.18 Position-time graphs of two objects with

velocities in opposite directions, showing

the time of meeting.

t(s)

t
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v
A
 =  + 54 km h–1  =  15 m s–1

v
B
  =  – 90 km h–1  =  – 25 m s–1

Relative velocity of B with respect to A = v
B 
– v

A
=

– 40 m s–1 , i.e. the train B appears to A to move
with a speed of 40 m s–1 from north to south.

Relative velocity of ground with respect to

B = 0 – v
B
 = 25 m s–1.

In (c), let the velocity of the monkey with respect
to ground be v

M
.
  
Relative velocity of the monkey

with respect to A,

v
MA 

= v
M
 – v

A 
= –18 km h–1 =–5 ms–1.  Therefore,

v
M
 = (15 – 5) m s–1 = 10 m s–1.

  t

SUMMARY

1. An object is said to be in motion if its position changes with time.  The position of the
object can be specified with reference to a conveniently chosen origin.  For motion in
a straight line, position to the right of the origin is taken as positive and to the left as
negative.

2. Path length is defined as the total length of the path traversed by an object.
3. Displacement is the change in position :  ∆x  =  x

2 
– x

1
.
   
Path length is greater or equal to

the magnitude of the displacement between the same points.
4. An object is said to be in uniform motion in a straight line if its displacement is  equal

in equal intervals of time.  Otherwise, the motion is said to be non-uniform.

5. Average velocity is the displacement divided by the time interval in which the
displacement occurs :

v
x

t
=

∆

∆

On an x-t graph, the average velocity over a time interval is the slope of the line

connecting the initial and final positions corresponding to that interval.

6. Average Speed is the ratio of total path length traversed and the corresponding time
interval.

The average speed of an object is greater or equal to the magnitude of the average
velocity over a given time interval.

7. Instantaneous velocity or simply velocity is defined as the limit of the average velocity as
the time interval ∆t becomes infinitesimally small :

d

dt 0 t 0

x x
v lim v lim

t t∆ → ∆ →

∆
= = =

∆

The velocity at a particular instant is equal to the slope of the tangent drawn on
position-time graph at that instant.

8. Average acceleration is the change in velocity divided by the time interval during which
the change occurs :

v
a

t

∆
=

∆

9. Instantaneous acceleration is defined as the limit of the average acceleration as the time
interval ∆t goes to zero :

d

dt 0 t 0

v v
a lim a lim

t t∆ → ∆ →

∆
= = =

∆

The acceleration of an object at a particular time is the slope of the velocity-time
graph at that instant of time.  For uniform motion, acceleration is zero and the x-t

graph is a straight line inclined to the time axis and the v-t graph is a straight line
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parallel to the time axis. For motion with uniform acceleration, x-t graph is a parabola
while the v-t graph is a straight line inclined to the time axis.

10. The area under the velocity-time curve between times t
1 
and t

2
 is equal to the displacement

of the object during that interval of time.

11. For objects in uniformly accelerated rectilinear motion, the five quantities, displacement
x, time taken t, initial velocity v

0
, final velocity v and acceleration a are related by a set

of simple equations called kinematic equations of motion :

        v = v
0
 +  at

       x v t
1

2
at0

2= +

        v v 2ax
2

0

2
= +

if the position of the object at time t = 0 is 0.  If the particle starts at x = x
0
 , x in above

equations is replaced by (x – x
0
).
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POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same
as the magnitude of displacement.  The displacement depends only on the end points;
the path length (as the name implies) depends on the actual path.  In one dimension,
the two quantities are equal only if the object does not change its direction during the
course of motion.  In all other cases, the path length is greater than the magnitude of
displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if
the path length is equal to the magnitude of displacement.

3. The origin and the positive direction of an axis are a matter of choice. You should first
specify this choice before you assign signs to quantities like displacement, velocity
and acceleration.

4. If a particle is speeding up, acceleration is in the direction of velocity; if its speed is
decreasing, acceleration is in the direction opposite to that of the velocity.  This
statement is independent of the choice of the origin and the axis.

5. The sign of acceleration does not tell us whether the particle’s speed is increasing or
decreasing.  The sign of acceleration (as mentioned in point 3) depends on the choice
of the positive direction of the axis.  For example, if the vertically upward direction is
chosen to be the positive direction of the axis, the acceleration due to gravity is
negative.  If a particle is falling under gravity, this acceleration, though negative,
results in increase in speed.  For a particle thrown upward, the same negative
acceleration (of gravity) results in decrease in speed.

6. The zero velocity of a particle at any instant does not necessarily imply zero acceleration
at that instant.  A particle may be momentarily at rest and yet have non-zero
acceleration.  For example, a particle thrown up has zero velocity at its uppermost
point but the acceleration at that instant continues to be the acceleration due to
gravity.

7. In the kinematic equations of motion [Eq. (3.11)], the various quantities are algebraic,
i.e. they may be positive or negative.  The equations are applicable in all situations
(for one dimensional motion with constant acceleration) provided the values of different
quantities are substituted in the equations with proper signs.

8. The definitions of instantaneous velocity and acceleration (Eqs. (3.3) and (3.5)) are
exact and are always correct while the kinematic equations (Eq. (3.11)) are true only
for motion in which the magnitude and the direction of acceleration are constant
during the course of motion.

EXERCISES

3.1 In which of the following examples of motion, can the body be considered
approximately a point object:
(a) a railway carriage moving without jerks between two stations.
(b) a monkey sitting on top of a man cycling smoothly on a circular track.
(c) a spinning cricket ball that turns sharply on hitting the ground.
(d) a tumbling beaker that has slipped off the edge of a table.

3.2 The position-time (x-t) graphs for two children A and B returning from their school
O to their homes P and Q respectively are shown in Fig. 3.19. Choose the correct
entries in the brackets below ;
(a) (A/B) lives closer to the school than (B/A)
(b) (A/B) starts from the school earlier than (B/A)
(c) (A/B) walks faster than (B/A)
(d) A and B reach home at the (same/different) time
(e) (A/B) overtakes (B/A) on the road (once/twice).
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3.3 A woman starts from her home at 9.00 am, walks with a speed of 5 km h–1 on a
straight road up to her office 2.5 km away, stays at the office up to 5.00 pm, and
returns home by an auto with a speed of 25 km h–1. Choose suitable scales and
plot the x-t graph of her motion.

3.4 A drunkard walking in a narrow lane takes 5 steps forward and 3 steps backward,
followed again by 5 steps forward and 3 steps backward, and so on. Each step is 1
m long and requires 1 s. Plot the x-t graph of his motion. Determine graphically
and otherwise how long the drunkard takes to fall in a pit 13 m away from the
start.

3.5 A jet airplane travelling at the speed of 500 km h–1 ejects its products of combustion
at the speed of 1500 km h–1 relative to the jet plane. What is the speed of the
latter with respect to an observer on the ground ?

3.6 A car moving along a straight highway with speed of 126 km h–1 is brought to a
stop within a distance of 200 m. What is the retardation of the car (assumed
uniform), and how long does it take for the car to stop ?

3.7 Two trains A and B of length 400 m each are moving on two parallel tracks with a
uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of
B decides to overtake A and accelerates by  1 m s–2. If after 50 s, the guard of B just
brushes past the driver of A, what was the original distance between them ?

3.8 On a two-lane road, car A is travelling with a speed of 36 km h–1. Two cars B and
C approach car A in opposite directions with a speed of 54 km h–1 each. At a
certain instant, when the distance AB is equal to AC, both being 1 km, B decides
to overtake A before C does. What minimum acceleration of car B is required to
avoid an accident ?

3.9 Two towns A and B are connected by a regular bus service with a bus leaving in
either direction every T minutes. A man cycling with a speed of 20 km h–1 in the
direction A to B notices that a bus goes past him every 18 min in the direction of
his motion, and every 6 min in the opposite direction. What is the period T of the
bus service and with what speed (assumed constant) do the buses ply on the
road?

3.10 A player throws a ball upwards with an initial speed of 29.4 m s–1.
(a) What is the direction of acceleration during the upward motion of the ball ?
(b) What are the velocity and acceleration of the ball at the highest point of its

motion ?
(c) Choose the x = 0 m and t = 0 s to be the location and time of the ball at its

highest point, vertically downward direction to be the positive direction of
x-axis, and give the signs of position, velocity and acceleration of the ball
during its upward, and downward motion.

(d) To what height does the ball rise and after how long does the ball return to the
player’s hands ? (Take g = 9.8 m s–2 and neglect air resistance).

Fig. 3.19
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3.11 Read each statement below carefully and state with reasons and examples, if it is
true or false ;

            A particle in one-dimensional motion
(a) with zero speed at an instant may have non-zero acceleration at that instant
(b) with zero speed may have non-zero velocity,
(c) with constant speed must have zero acceleration,
(d) with positive value of acceleration must be speeding up.

3.12 A ball is dropped from a height of 90 m on a floor. At each collision with the floor,
the ball loses one tenth of its speed. Plot the speed-time graph of its motion
between t = 0 to 12 s.

3.13 Explain clearly, with examples, the distinction between :
(a) magnitude of displacement (sometimes called distance) over an interval of time,

and the total length of path covered by a particle over the same interval;
(b) magnitude of average velocity over an interval of time, and the average speed

over the same interval. [Average speed of a particle over an interval of time is
defined as the total path length divided by the time interval]. Show in both (a)
and (b) that the second quantity is either greater than or equal to the first.
When is the equality sign true ? [For simplicity, consider one-dimensional
motion only].

3.14 A man walks on a straight road from his home to a market 2.5 km away with a
speed of 5 km h–1. Finding the market closed, he instantly turns and walks back
home with a speed of 7.5 km h–1. What is the
(a) magnitude of average velocity, and
(b) average speed of the man over the interval of time (i) 0 to 30 min, (ii) 0 to

50 min, (iii) 0 to 40 min ? [Note: You will appreciate from this exercise why it
is better to define average speed as total path length divided by time, and not
as magnitude of average velocity. You would not like to tell the tired man on
his return home that his average speed was zero !]

3.15 In Exercises 3.13 and 3.14, we have carefully distinguished between average speed
and magnitude of average velocity. No such distinction is necessary when we
consider instantaneous speed and magnitude of velocity. The instantaneous speed
is always equal to the magnitude of instantaneous velocity. Why ?

3.16 Look at the graphs (a) to (d) (Fig. 3.20) carefully and state, with reasons, which of
these cannot possibly represent one-dimensional motion of a particle.

Fig. 3.20
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Fig. 3.24

        Fig. 3.21

3.17 Figure 3.21 shows the x-t plot of one-dimensional
motion of a particle. Is it correct to say from the
graph that the particle moves in a straight line for
t < 0 and on a parabolic path for t >0 ? If not, suggest
a suitable physical context for this graph.

3.18 A police van moving on a highway with a speed of
30 km h–1 fires a bullet at a thief’s car speeding away
in the same direction with a speed of 192 km h–1. If
the muzzle speed of the bullet is 150 m s–1, with
what speed does the bullet hit the thief’s car ? (Note:
Obtain that speed which is relevant for damaging
the thief’s car).

3.19 Suggest a suitable physical situation for each of the
following graphs (Fig 3.22):

Fig. 3.22

3.20 Figure 3.23 gives the x-t plot of a particle executing one-dimensional simple
harmonic motion. (You will learn about this motion in more detail in Chapter14).
Give the signs of position, velocity and acceleration variables of the particle at
t = 0.3 s, 1.2 s, – 1.2 s.

Fig. 3.23

3.21 Figure 3.24 gives the x-t plot of a
particle in one-dimensional motion.
Three different equal intervals of time
are shown. In which interval is the
average speed greatest, and in which
is it the least ?  Give the sign of average
velocity for each interval.
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3.22 Figure 3.25 gives a speed-time graph of
a particle in motion along a constant
direction. Three equal intervals of time
are shown. In which interval is the
average acceleration greatest in
magnitude ? In which interval is the
average speed greatest ? Choosing the
positive direction as the constant
direction of motion, give the signs of v
and a in the three intervals. What are
the accelerations at the points A, B, C
and D ?

Additional Exercises

3.23 A three-wheeler starts from rest, accelerates uniformly with 1 m s–2 on a straight
road for 10 s, and then moves with uniform velocity. Plot the distance covered by
the vehicle during the nth second (n = 1,2,3….) versus n. What do you expect this
plot to be during accelerated motion : a straight line or a parabola ?

3.24 A boy standing on a stationary lift (open from above) throws a ball upwards with
the maximum initial speed he can, equal to 49 m s–1. How much time does the ball
take to return to his hands? If the lift starts moving up with a uniform speed of
5 m s-1 and the boy again throws the ball up with the maximum speed he can, how
long does the ball take to return to his hands ?

3.25 On a long horizontally moving belt (Fig. 3.26), a child runs to and fro with a speed
9 km h

–1
 (with respect to the belt) between his father and mother located 50 m apart

on the moving belt. The belt moves with a speed of 4 km h–1. For an observer on a
stationary platform outside, what is the
(a) speed of the child running in the direction of motion of the belt ?.
(b) speed of the child running opposite to the direction of motion of the belt ?
(c) time taken by the child in (a) and (b) ?

Which of the answers alter if motion is viewed by one of the parents ?

Fig.  3.26

3.26 Two stones are thrown up simultaneously from the edge of a cliff 200 m high with
initial speeds of 15 m s–1 and 30 m s–1. Verify that the graph shown in  Fig. 3.27
correctly represents the time  variation of the relative position of the second stone
with respect to the first. Neglect air resistance and assume that the stones do not
rebound after hitting the ground. Take g = 10 m s–2. Give the equations for the
linear and curved parts of the plot.

Fig. 3.25
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 Fig. 3.27

3.27 The speed-time graph of a particle moving along a fixed direction is shown in
Fig. 3.28. Obtain the distance traversed by the particle between (a) t = 0 s to 10 s,
(b) t = 2 s to 6 s.

Fig. 3.28

What is the average speed of the particle over the intervals in (a) and (b) ?

3.28 The  velocity-time  graph  of  a  particle in one-dimensional  motion is shown in
Fig. 3.29 :

Fig. 3.29

Which of the following formulae are correct for describing the motion of the particle
over the time-interval t

1
 to t

2
:
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2 
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) = area under the v-t curve bounded by the t-axis and the dotted line

shown.

2018-19



MOTION IN A STRAIGHT LINE 61

APPENDIX  3.1 :  ELEMENTS OF CALCULUS

Differential Calculus

Using the concept of ‘differential coefficient’ or ‘derivative’, we can easily define velocity and
acceleration.  Though you will learn in detail in mathematics about derivatives, we shall introduce
this concept in brief in this Appendix so as to facilitate its use in describing physical quantities
involved in motion.

Suppose we have a quantity y whose value depends upon a single variable x, and is expressed
by an equation defining y as some specific function of x.  This is represented as:

 y = f (x) (1)

This relationship can be visualised by drawing a graph of function y = f (x) regarding y and x as
Cartesian coordinates, as shown in Fig. 3.30 (a).

                             (a)      (b)
Fig.  3.30

Consider the point P on the curve y = f (x) whose coordinates are (x, y) and another point Q
where coordinates are (x + ∆x, y + ∆y).  The slope of the line joining P and Q is given by:

( )
x

yyy

x

y
tan

∆
−∆+

=
∆
∆

=θ (2)

Suppose now that the point Q moves along the curve towards P.  In this process, ∆y and ∆x

decrease and approach zero; though their ratio 
∆

∆

y

x
  will not necessarily vanish.  What happens

to the line PQ as ∆y→ 0, ∆x→ 0. You can see that this line becomes a tangent to the curve at
point P as shown in Fig. 3.30(b).  This means that tan θ  approaches the slope of  the tangent at
P, denoted by m:

                                
x 0 0
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x

y y y y
m
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∆ ∆
(3)

The limit of the ratio ∆y/∆x as  ∆x approaches zero is called the derivative of y with respect to x

and is written as dy/dx. It represents the slope of the tangent line to the curve y = f (x) at the
point (x, y).

Since y = f (x) and y + ∆y = f (x + ∆x), we can write the definition of the derivative as:
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Given below are some elementary formulae for derivatives of functions.  In these u (x) and v (x)
represent arbitrary functions of x, and a and b denote constant quantities that are independent
of x.  Derivatives of some common functions are also listed .
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In terms of derivatives, instantaneous velocity and acceleration are defined as
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Integral Calculus

You are familiar with the notion of area.  The formulae for areas of simple geometrical figures are
also known to you.  For example, the area of a rectangle is length times breadth and that of a
triangle is half of the product of base and height.  But how to deal with the problem of determination
of area of an irregular figure?  The mathematical notion of integral is necessary in connection with
such problems.

Let us take a concrete example.  Suppose a variable force f (x) acts on a particle in its motion
along x - axis from x = a to x = b.  The problem is to determine the work done (W) by the force on the
particle during the motion.  This problem is discussed in detail in Chapter 6.

Figure 3.31 shows the variation of  F(x)  with x.  If the force were constant, work  would  be  simply
the area F (b-a) as shown in Fig. 3.31(i).  But in the general case, force is varying .

Fig. 3.31

2018-19



MOTION IN A STRAIGHT LINE 63

To calculate the area under this curve  [Fig. 3.31  (ii)], let us employ the following trick.  Divide the
interval on x-axis from a to b into a large number (N) of small intervals: x0(=a) to x1, x1 to x2 ; x2 to x3,

................................ xN-1 to xN (=b). The area under the curve is thus divided into N strips.  Each strip
is approximately a rectangle, since the variation of  F(x) over a strip is negligible.  The area of the ith

strip shown [Fig. 3.31(ii)] is then approximately

xxFxxxFA iiiii ∆==∆ )()–)(( 1–

where ∆x is the width of the strip which we have taken to be the same for all the strips.  You may
wonder whether we should put F(xi-1) or the mean of F(xi)  and  F(xi-1) in the above expression.  If we
take N to be very very large (N→∞ ),  it does not really matter, since then the strip will be so thin that
the difference between  F(xi) and F(xi-1)  is vanishingly small.  The total area under the curve then is:

∑∑
==

∆=∆=
N

i

i

N

i

i xxFAA

11
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The limit of this sum as N→∞  is known as the integral of F(x) over x from a to b. It is given a special
symbol as shown below:

∫=

b

a

dxxFA )(

The integral sign ∫ looks like an elongated S, reminding us that it basically is the limit of the sum

of an infinite number of terms.
A most significant mathematical fact is that integration is, in a sense, an inverse of differentiation.

Suppose we have a function g (x) whose derivative is f (x), i.e. 
dx

xdg
xf

)(
)( =

The function g (x) is known as the indefinite integral of f (x) and is denoted as:

∫= dxxfxg )()(

An integral with lower and upper limits is known as a definite integral.   It is a number.  Indefinite
integral has no limits; it is a function.

A fundamental theorem of mathematics states that

               )(–)()()( agbg xgdx xf
b

a

b

a

≡=∫

As an example, suppose f (x) = x2 and we wish to determine the value of the definite integral from
x =1 to x = 2.  The function g (x) whose derivative is x2

 is x3/3.  Therefore,

        3

7

3

1
–

3

8
2
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1

2 ===∫  
3

x
dx x

3

Clearly, to evaluate definite integrals, we need to know the corresponding indefinite integrals.  Some
common indefinite integrals are
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( ) ln ( )
1

x
x x xd               0= >∫

This introduction to differential and integral calculus is not rigorous and is intended to convey to
you the basic notions of calculus.
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CHAPTER FOUR

MOTION IN A PLANE

4.1  INTRODUCTION

In the last chapter we developed the concepts of position,

displacement, velocity and acceleration that are needed to

describe the motion of an object along a straight line. We

found that the directional aspect of these quantities can be

taken care of by + and – signs, as in one dimension only two

directions are possible. But in order to describe motion of an

object in two dimensions (a plane) or three dimensions

(space), we need to use vectors to describe the above-

mentioned physical quantities.  Therefore, it is first necessary

to learn the language of vectors. What is a vector ? How to

add, subtract and multiply vectors ? What is the result of

multiplying a vector by a real number ? We shall learn this

to enable us to use vectors for defining velocity and

acceleration in a plane. We then discuss motion of an object

in a plane.  As a simple case of motion in a plane, we shall

discuss motion with constant acceleration and treat in detail

the projectile motion. Circular motion is a familiar class of

motion that has a special significance in daily-life situations.

We shall discuss uniform circular motion in some detail.

The equations developed in this chapter for motion in a

plane can be easily extended to the case of three dimensions.

4.2  SCALARS AND VECTORS

In physics, we can classify quantities as scalars or

vectors.  Basically, the difference is that a direction is
associated with a vector but not with a scalar.  A scalar

quantity is a quantity with magnitude only. It is specified

completely by a single number, along with the proper

unit. Examples are : the distance between two points,

mass of an object, the temperature of a body and the

time at which a certain event happened.  The rules for

combining scalars are the rules of ordinary algebra.

Scalars can be added, subtracted, multiplied and divided

4.1 Introduction

4.2 Scalars and vectors

4.3 Multiplication of vectors by

real numbers

4.4 Addition and subtraction of

vectors — graphical method

4.5 Resolution of vectors

4.6 Vector addition — analytical

method

4.7 Motion in a plane

4.8 Motion in a plane with

constant acceleration

4.9 Relative velocity in two

dimensions

4.10 Projectile motion

4.11 Uniform circular motion

Summary

Points to ponder

Exercises

Additional exercises
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just as the ordinary numbers*. For example,

if the length and breadth of a rectangle are
1.0 m and 0.5 m respectively, then its
perimeter is the sum of the lengths of the
four sides, 1.0 m + 0.5 m +1.0 m + 0.5 m =
3.0 m. The length of each side is a scalar
and the perimeter is also a scalar. Take
another example: the maximum and
minimum temperatures on a particular day
are 35.6 °C and 24.2 °C respectively.  Then,
the difference between the two temperatures
is 11.4 °C. Similarly, if a uniform solid cube
of aluminium of side 10 cm has a mass of
2.7 kg, then its volume is 10–3 m3 (a scalar)
and its density is 2.7×103 kg m–3 (a scalar).

A vector quantity is a quantity that has both

a magnitude and a direction and obeys the

triangle law of addition or equivalently the

parallelogram law of addition. So, a vector is

specified by giving its magnitude by a number

and its direction. Some physical quantities that

are represented by vectors are displacement,

velocity, acceleration and force.

To represent a vector, we use a bold face type
in this book. Thus, a velocity vector can be
represented by a symbol v.  Since bold face is
difficult to produce, when written by hand, a
vector is often represented by an arrow placed

over a letter, say 
r
v . Thus, both v and 

r
v

represent the velocity vector. The magnitude of
a vector is often called its absolute value,
indicated by |v| = v.  Thus, a vector is
represented by a bold face, e.g. by A, a, p, q, r, ...
x, y, with respective magnitudes denoted by light
face A, a, p, q, r, ... x, y.

4.2.1  Position and Displacement Vectors

To describe the position of an object moving in
a plane, we  need to choose a convenient point,
say O as origin. Let P and P′ be the positions of
the object at time t and t′, respectively [Fig. 4.1(a)].
We join O and P by a straight line.  Then, OP is
the position vector of the object at time t.  An
arrow is marked at the head of this line.  It is
represented by a symbol r, i.e. OP = r.  Point P′ is

represented by another position vector, OP′
denoted by r′. The length of the vector r
represents the magnitude of the vector and its
direction is the direction in which P lies as seen
from O. If the object moves from P to P′, the
vector PP′ (with tail at P and tip at P′) is called
the displacement vector corresponding to
motion from point P (at time t) to point P′ (at time t′).

Fig. 4.1 (a) Position and displacement vectors.

(b) Displacement vector PQ and different

     courses of motion.

It is important to note that displacement

vector is the straight line joining the initial and

final positions and does not depend on the actual

path undertaken by the object between the two

positions.  For example, in Fig. 4.1(b), given the

initial and final positions as P and Q, the

displacement vector is the same PQ for different

paths of journey, say PABCQ, PDQ, and PBEFQ.

Therefore, the magnitude of displacement is

either less or equal to the path length of an

object between two points. This fact was

emphasised in the previous chapter also while

discussing motion along a straight line.

4.2.2  Equality of Vectors

Two vectors A and B are said to be equal if, and

only if, they have the same magnitude and the

same direction.**
Figure 4.2(a) shows two equal vectors A and

B. We can easily check their equality.  Shift B

parallel to itself until its tail Q coincides with that

of A, i.e. Q coincides with O. Then, since  their

tips S and P also coincide, the two vectors are

said to be equal.  In general, equality is indicated

* Addition and subtraction of scalars make sense only for quantities with same units. However, you can multiply

and divide scalars of different units.

** In our study, vectors do not have fixed locations. So displacing a vector parallel to itself leaves the vector

unchanged. Such vectors are called free vectors. However, in some physical applications, location or line of

application of a vector is important. Such vectors are called localised vectors.
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as A = B. Note that in Fig. 4.2(b), vectors A′ and
B′ have the same magnitude but they are not
equal because they have different directions.
Even if we shift B′ parallel to itself so that its tail
Q′ coincides with the tail O′ of A′, the tip S′ of B′
does not coincide with the tip P′ of A′.

4.3 MULTIPLICATION OF VECTORS BY REAL
NUMBERS

Multiplying a vector A with a positive number λ
gives a vector whose magnitude is changed by
the factor λ but the direction is the same as that
of A :

λ A = λ A if λ > 0.

For example, if A is multiplied by 2, the resultant
vector 2A is in the same direction as A and has

a magnitude twice of |A| as shown in Fig. 4.3(a).

Multiplying a vector A by a negative number
−λ gives another vector whose direction is
opposite to the direction of A and whose
magnitude is λ times |A|.

Multiplying a given vector A by negative
numbers, say –1 and –1.5, gives vectors as
shown in Fig 4.3(b).

The  factor λ by  which  a vector A is multiplied
could be a scalar having its own physical
dimension. Then, the dimension of λ A is the
product of the dimensions of λ and A. For
example, if we multiply a constant velocity vector
by duration (of time), we get a displacement
vector.

4.4 ADDITION AND SUBTRACTION OF
VECTORS — GRAPHICAL METHOD

As mentioned in section 4.2, vectors, by
definition, obey the triangle law or equivalently,
the parallelogram law of addition.  We shall now
describe this law of addition using the graphical
method. Let us consider two vectors A and B that
lie in a plane as shown in Fig. 4.4(a).  The lengths
of the line segments representing these vectors
are proportional to the magnitude of the vectors.
To find the sum A + B, we place vector B so that
its tail is at the head of the vector A, as in
Fig. 4.4(b). Then, we join the tail of A to the head
of B. This line OQ represents a vector R, that is,
the sum of the vectors A and B. Since, in this
procedure of vector addition, vectors are

Fig. 4.2  (a) Two equal vectors A and B.  (b) Two

vectors A′     and B′ are unequal though they

are of the same length.

Fig. 4.3 (a) Vector A and the resultant vector after

multiplying A by a positive number 2.

(b) Vector A and resultant vectors after

multiplying it by a negative number –1

and –1.5.

(c) (d)

Fig. 4.4  (a) Vectors A and B. (b) Vectors A and B
added graphically. (c) Vectors B and A
added graphically. (d) Illustrating the

associative law of vector addition.
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arranged head to tail, this graphical method is
called the head-to-tail method. The two vectors
and their resultant form three sides of a triangle,
so this method is also known as triangle method
of vector addition. If we find the resultant of
B + A as in Fig. 4.4(c), the same vector R is
obtained. Thus, vector addition is commutative:

A + B = B + A (4.1)

The addition of vectors also obeys the associative
law as illustrated in Fig. 4.4(d). The result of
adding vectors A and B first and then adding
vector C is the same as the result of adding B
and C first and then adding vector A :

(A + B) + C = A + (B + C) (4.2)

What is the result of adding two equal and
opposite vectors ? Consider  two  vectors A and
–A shown in Fig. 4.3(b). Their sum is A + (–A).
Since the magnitudes of the two vectors are the
same, but the directions are opposite, the
resultant vector has zero magnitude and is
represented by 0 called a null vector or a zero
vector :

A – A = 0         |0|= 0 (4.3)

Since the magnitude of a null vector is zero, its
direction cannot be specified.

The null vector also results when we multiply
a vector A by the number zero. The main
properties of 0 are :

A + 0 = A
λ 0 = 0
0 A = 0        (4.4)

Fig. 4.5 (a) Two vectors A and B, – B is also shown. (b) Subtracting vector B from vector A – the result is R
2
. For

comparison, addition of vectors A and B, i.e. R
1
 is also shown.

What is the physical meaning of a zero vector?
Consider the position and displacement vectors
in a plane as shown in Fig. 4.1(a). Now suppose
that an object which is at P at time t, moves to
P′ and then comes back to P. Then, what is its
displacement? Since the initial and final
positions coincide, the displacement is a “null
vector”.

Subtraction of vectors can be defined in terms
of addition of vectors. We define the difference
of two vectors A and B as the sum of two vectors
A and –B :

A – B = A + (–B) (4.5)

It is shown in Fig 4.5. The vector –B is added to

vector A to get R
2 
= (A – B). The vector R

1 
= A + B

is also shown in the same figure for comparison.

We can also use the parallelogram method to
find the sum of two vectors. Suppose we have

two vectors A and B. To add these vectors, we

bring their tails to a common origin O as

shown in Fig. 4.6(a). Then we draw a line from
the head of A parallel to B and another line from

the head of B parallel to A to complete a

parallelogram OQSP.  Now we join the point of

the intersection of these two lines to the origin

O. The resultant vector R is directed from the

common origin O along  the diagonal (OS) of the
parallelogram [Fig. 4.6(b)]. In Fig.4.6(c), the

triangle law is used to obtain the resultant of A
and B and we see that the two methods yield the

same result. Thus, the two methods are

equivalent.
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Example 4.1 Rain is falling vertically with
a speed of 35 m s–1.  Winds starts blowing
after sometime with a speed of 12 m s–1 in
east to west direction.  In which direction
should a boy waiting at a bus stop hold
his umbrella ?

Fig. 4.7

Answer  The velocity of the rain and the wind
are represented by the vectors v

r
 and v

w
 in      Fig.

4.7 and are in the direction specified by the
problem.  Using the rule of vector addition, we
see that the resultant of v

r
 and v

w
 is R as shown

in the figure.  The magnitude of R is

R v vr

2

w

2= + = + =− −
35 12  m s 37 m s

2 2 1 1

The direction θ  that R makes with the vertical
is given by

12
tan 0.343

35
w

r

v
 

v
θ = = =

Or,     ( ) θ = = °tan
-

.
1

0 343 19

Therefore, the boy should hold his umbrella
in the vertical plane at an angle of about 19o

with the vertical towards the east.       t

Fig. 4.6 (a) Two vectors A and B with their tails brought to a common origin. (b) The sum A + B obtained using

the parallelogram method. (c) The parallelogram method of vector addition is equivalent to the triangle

method.

4.5  RESOLUTION OF VECTORS

Let a and b be any two non-zero vectors in a
plane with different directions and let A be
another vector in the same plane(Fig. 4.8). A can
be expressed as a sum of two vectors — one
obtained by multiplying a by a real number and
the other obtained by multiplying b by another
real number. To see this, let O and P be the tail
and head of the vector A. Then, through O, draw
a straight line parallel to a, and through P, a
straight line parallel to b. Let them intersect at
Q. Then, we have

A = OP  = OQ + QP (4.6)

But since OQ is parallel to a, and QP is parallel
to b, we can write :

OQ = λ a, and QP = µ b (4.7)

where  λ and µ are real numbers.

Therefore, A = λ a + µ b (4.8)

Fig. 4.8 (a) Two non-colinear vectors a and b.

(b) Resolving a vector A in terms of vectors

a and b.

We say that A has been resolved into two
component vectors λ a and µ b along a and b
respectively. Using this method one can resolve
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Fig. 4.9 (a) Unit vectors  �i  , 
�j  and �k lie along the x-, y-, and z-axes. (b) A vector A is resolved into its

components A
x 
and A

y
 along x-, and y- axes. (c) A

1
 and  A

2 
expressed in terms of �i  and �j .

a given vector into two component vectors along
a set of two vectors – all the three lie in the same
plane. It is convenient to resolve a general vector
along the axes of a rectangular coordinate
system using vectors of unit magnitude. These
are called unit vectors that we discuss now. A
unit vector is a vector of unit magnitude and
points in a particular direction. It has no
dimension and unit. It is used to specify a
direction only. Unit vectors along the x-, y- and
z-axes of a rectangular coordinate system are

denoted by �i , 
�j  and k̂ , respectively, as shown

in Fig. 4.9(a).
Since these are unit vectors, we have

 î   =  ĵ  =  k̂ =1 (4.9)

These unit vectors are perpendicular to each
other. In this text, they are printed in bold face
with a cap (^) to distinguish them from other
vectors. Since we are dealing with motion in two
dimensions in this chapter, we require use of
only two unit vectors. If we multiply a unit vector,

say n̂ by a scalar, the result is a vector

λλλλλ = λn̂.  In general, a vector A can be written as

A = |A| n̂ (4.10)

where n̂ is a unit vector along A.

We can now resolve a vector A in terms
of component vectors that lie along unit vectors

î  and �j.  Consider a vector A that lies in x-y

plane as shown in Fig. 4.9(b). We draw lines from
the head of A perpendicular to the coordinate
axes as in Fig. 4.9(b), and get vectors A

1
 and A

2

such that  A
1
 + A

2 
= A. Since A

1
 is parallel to  �i

and A
2
 is parallel to �j ,  we have :

A
1
= A

x
 �i ,  A

2
 = A

y 
�j (4.11)

where A
x 
 and  A

y
 are real numbers.

Thus,    A = A
x  
�i+ A

y
 �j              (4.12)

This is represented in Fig. 4.9(c). The quantities
A

x  
and A

y  
are called x-, and y- components of the

vector A. Note that A
x
 is itself not a vector, but

A
x
 �i  is a vector, and so is A

y 

�j . Using simple

trigonometry, we can express A
x   

and A
y
 in terms

of the magnitude of A and the angle θ it makes
with the x-axis :

A
x 
 = A cos θ

A
y
 = A sin θ (4.13)

As is clear from Eq. (4.13), a component of a
vector can be positive, negative or zero
depending on the value of θ.

Now, we have two ways to specify a vector A
in a plane. It can be specified by :
(i) its magnitude A and the direction θ it makes

with the x-axis; or
(ii) its components A

x
 and A

y

If A and θ  are given,  A
x 
and A

y  
can be obtained

using Eq. (4.13). If A
x  
and A

y  
 are given, A and θ

can be obtained as follows :

A A A Ax

2

y

2 2 2 2 2+ = +cos sinθ θ

 = A2

Or, A A Ax
2

y
2= +      (4.14)

And tan , tanθ θ= =
−

A

A

A

A

y

x

y

x

1

             (4.15)

2018-19



MOTION IN A PLANE 71

t

B i j= +B Bx y
� �

Let R be their sum. We have

R = A + B

   ( ) ( )= + + +A A B Bx y x y
� � � �i j i j (4.19a)

Since vectors obey the commutative and
associative laws, we can arrange and regroup
the vectors in Eq. (4.19a) as convenient to us :

( ) ( )R i j= + + +A B A Bx x y y
� � (4.19b)

SinceR i j= +R Rx y
� � (4.20)

we have, x x x y y yR A B ,  R A B  = + = + (4.21)

Thus, each component of the resultant
vector R is the sum of the corresponding
components of A and B.

In three dimensions, we have

A i j k= + +A A Ax y z
� � �

B i j k= + +B B Bx y z
� � �

R A B i j k= + = + +R R Rx y z
� � �

with R A Bx x x= +

R A By y y= +

R A Bz z z= + (4.22)

This method can be extended to addition and
subtraction of any number of vectors. For
example, if vectors a, b and c are given as

a i j k= + +a a ax y z
� � �

b i j k= + +b b bx y z
� � �

c i j k= + +c c cx y z
� � � (4.23a)

then, a vector T = a + b – c has components :

T a b cx x x x= + −

T a b cy y y y= + − (4.23b)

T a b cz z z z= + − .

Example 4.2 Find the magnitude and
direction of the resultant of two vectors A
and B in terms of their magnitudes and
angle θ between them.

Fig. 4.9 (d) A vector A resolved into components along

x-, y-, and z-axes

* Note that angles α, β, and γ are angles in space. They are between pairs of lines, which are not coplanar.

So far we have considered a vector lying in
an x-y plane. The same procedure can be used
to resolve a general vector A into three
components along x-, y-, and z-axes in three

dimensions. If α, β, and γ are the angles*
between A and the x-, y-, and z-axes, respectively
[Fig. 4.9(d)], we have

(d)

x y zA A cos ,  A A cos ,  A A cos  α β γ= = = (4.16a)

In general, we have

ˆ ˆ ˆ
x y zA A A= + +A i j k (4.16b)

The magnitude of vector A is
2 22

x y zA A A A= + + (4.16c)

A position vector r can be expressed as

r i j k= + +x y z � � � (4.17)

where x, y, and z are the components of r along

x-, y-,  z-axes, respectively.

4.6 VECTOR ADDITION – ANALYTICAL
METHOD

Although the graphical method of adding vectors

helps us in visualising the vectors and the

resultant vector, it is sometimes tedious and has

limited accuracy. It is much easier to add vectors

by combining their respective components.

Consider two vectors A and B in x-y plane with

components A
x
, A

y
 and B

x
, B

y
 :

A i j= +A Ax y
� � (4.18)
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Fig. 4.10

Answer  Let OP and OQ represent the two vectors
A and B making an angle θ  (Fig. 4.10).  Then,
using the parallelogram method of vector
addition, OS represents the resultant vector R :

             R = A + B

SN is normal to OP and PM is normal to OS.

From the geometry of the figure,

OS2 = ON2 + SN2

but ON = OP + PN = A + B cos θ
SN = B sin θ

OS2 = (A + B cos θ)2 + (B sin θ)2

or, R2 = A2 + B2 + 2AB  cos θ

R A B 2AB  2 2= + + cosθ (4.24a)

In ∆ OSN,   SN = OS sinα = R sinα,  and
in ∆ PSN,   SN = PS sin θ = B sin θ

Therefore,   R sin α  = B sin θ

or,      
R B

sin sin θ α
= (4.24b)

Similarly,
      PM = A  sin α  = B  sin β

or,      
A B

sin sin β α
= (4.24c)

Combining Eqs. (4.24b) and (4.24c), we get

      
R A

sin sin sin θ β α
= =

B
(4.24d)

Using Eq. (4.24d), we get:

      sin sin α θ=
B

R
(4.24e)

where R is given by Eq. (4.24a).

or, 
sin

tan
cos

SN B

OP PN A B

θα
θ

= =
+ +

(4.24f)

Equation (4.24a) gives the magnitude of the
resultant and Eqs. (4.24e) and (4.24f) its direction.
Equation (4.24a) is known as the Law of cosines
and Eq. (4.24d) as the Law of sines.                    t

Example 4.3 A motorboat is racing
towards north at 25 km/h and the water
current in that region is 10 km/h in the
direction of 60° east of south. Find the
resultant velocity of the boat.

Answer   The vector v
b
 representing the velocity

of the motorboat and the vector v
c 
representing

the water current are shown in Fig. 4.11 in
directions specified by the problem. Using the
parallelogram method of addition, the resultant
R is obtained in the direction shown in the
figure.

Fig. 4.11

We can obtain the magnitude of R using the Law
of cosine :

R v v v v= b
2

c
2

b c2 cos120+ + o

= 25 10 2 25 10 -1/2 22 km/h2 2+ + × × ( ) ≅

To obtain the direction, we apply the Law of sines

R vc

sin sin θ φ
=   or, sin  φ θ=

v

R 

c
sin 

=
10 sin120

21.8

10 3

2 21.8
0.397

×
=

×
≅

�

φ ≅  23.4
� t

4.7  MOTION IN A PLANE

In this section we shall see how to describe
motion in two dimensions using vectors.
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4.7.1 Position Vector and Displacement

The position vector r of a particle P located in a
plane with reference to the origin of an x-y

reference frame (Fig. 4.12) is given by

r i j= +x y � �

where x and y are components of r along x-, and
y- axes or simply they are the coordinates of
the object.

(a)

(b)

Fig. 4.12 (a) Position vector r. (b) Displacement ∆r and

average velocity v of a particle.

Suppose a particle moves along the curve shown
by the thick line and is at P at time t and P′ at
time t′ [Fig. 4.12(b)].  Then, the displacement is :

∆r  = r′ – r (4.25)
and is directed from P to P′.

We can write Eq. (4.25) in a component form:

∆r   ( ) ( )= + − +x' y' x � � � �i j i jy 

= +� �i j∆ ∆x y

where ∆x = x ′ – x, ∆y = y′ – y (4.26)

Velocity

The average velocity ( )v  of an object is the ratio

of the displacement and the corresponding time
interval :

v
r i j

i j= =
+

= +
∆ 

∆

∆ ∆

∆

∆

∆

∆

∆t

x y 

t

x

t

y

t

� �
� � (4.27)

Or, �ˆ
x yv v= +v  i j

Since v
r

=
∆

∆t
, the direction of the average velocity

is the same as that of ∆r (Fig. 4.12).  The velocity
(instantaneous velocity) is given by the limiting
value of the average velocity as the time interval
approaches zero :

v
r r

= =
→

lim
t tt∆

∆
∆0

d

d
(4.28)

The meaning of the limiting process can be easily
understood with the help of Fig 4.13(a) to (d). In
these figures, the thick line represents the path
of an object, which is at P at time t.   P

1
, P

2
 and

P
3 
represent the positions of the object  after

times ∆t
1
,∆t

2
, and ∆t

3
. ∆r

1
,  ∆r

2
, and ∆r

3
 are the

displacements of the object in times  ∆t
1
, ∆t

2
, and

Fig. 4.13 As the time interval ∆t approaches zero, the average velocity approaches the velocity v. The direction

of  v is parallel to the line tangent to the path.
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∆t
3
, respectively. The direction of the average

velocity v   is shown in figures (a), (b) and (c) for
three decreasing values of ∆t, i.e. ∆t

1
,∆t

2
, and ∆t

3
,

(∆t
1 

>  ∆t
2 

>  ∆t
3
). As ∆t →→→→→ 0, ∆r →→→→→ 0

and is along the tangent to the path [Fig. 4.13(d)].
Therefore, the direction of velocity at any point
on the path of an object is tangential to the
path at that point and is in the direction of
motion.

We can express v in a component form :

v
r

=
d

dt

 = +










→
lim

x

t

y

tt∆

∆

∆

∆

∆0

� �i j                   (4.29)

= +
→ →

� �i jlim
x

t
lim

y

tt t∆ ∆

∆

∆

∆

∆0 0

Or, v i j i j= + = +� � � �d

d

d

d

x

t

y

t
v vx y .

where v
x

t
v

y

tx y= =
d

d

d

d
,                 (4.30a)

So, if the expressions for the coordinates x and
y are known as functions of time, we can use
these equations to find v

x
 and v

y
.

The magnitude of v is then

v v vx
2

y
2= + (4.30b)

and the direction of v is given by the angle θ :

tan   tan
1θ θ= =














−v

v

v

v

y

x

y

x

,               (4.30c)

v
x
, v

y
 and angle θ are shown in Fig. 4.14 for a

velocity vector v.

Acceleration

The average acceleration  a of an object for a
time interval ∆t moving in x-y plane is the change
in velocity divided by the time interval :

  
( )

a
v i j

i j= =
+

= +
∆

∆

∆

∆

∆

∆

∆

∆t

v v

t

v

t

v

t

x y x y
� �

� �         (4.31a)

Or, a i j= +a ax y
� � .        (4.31b)

The acceleration (instantaneous acceleration)
is the limiting value of the average acceleration
as the time interval approaches zero :

a
v

=
→

lim
tt∆

∆

∆0
       (4.32a)

Since ∆ ∆ ∆v = +v v ,x y
� �i j we have

a i j= +
→ →

� �lim
v

t
lim

v

tt

x

t

y

∆ ∆

∆

∆

∆

∆0 0

Or, a i j= +a ax y
� �

       (4.32b)

where, a
v

t
,  a

v

t
x

x
y

y
= =

d

d

d

d
     (4.32c)*

As in the case of velocity, we can understand
graphically the limiting process used in defining
acceleration on a graph showing the path of the
object’s motion. This is shown in Figs. 4.15(a) to
(d).  P represents the position of the object at
time t and P

1
, P

2
, P

3
 positions after time ∆t

1
, ∆t

2
,

∆t
3
, respectively (∆t

 1
> ∆t

2
>∆t

3
). The velocity vectors

at points P, P
1
, P

2
, P

3
 are also shown in Figs. 4.15

(a), (b) and (c). In each case of ∆t, ∆v is obtained
using the triangle law of vector addition. By
definition, the direction of average   acceleration
is the same as that of ∆v. We see that as ∆t

decreases, the direction of ∆v changes and
consequently, the direction of the acceleration
changes. Finally, in the limit ∆t g0 [Fig. 4.15(d)],
the average acceleration becomes the
instantaneous acceleration and has the direction
as shown.

Fig. 4.14 The components v
x
 and vy

 
of velocity v and

the angle θ it makes with x-axis. Note that

v
x
 = v cos θ, v

y
 = v sin θ.

* In terms of x and y, a
x
 and a

y
 can be expressed as
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  x (m)

Note that in one dimension, the velocity and
the acceleration of an object are always along
the same straight line (either in the same
direction or in the opposite direction).
However, for motion in two or three
dimensions, velocity and acceleration vectors
may have any angle between 0° and 180°
between them.

Example 4.4 The position of a particle is
given by

             r  i j k = + +3.0t ˆ . ˆ . ˆ2 0 5 02t

where t is in seconds and the coefficients
have the proper units for r to be in metres.
(a) Find v(t) and a(t) of the particle. (b) Find
the magnitude and direction of v(t) at
t = 1.0 s.

Answer

( ) ( )v
r

i  j kt
t t

t t
2= = + +

d

d

d

d
3.0 2.0 5.0 � � �

      = +3.0 .0� �i j4 t 

( )a 
v

jt
t

=
d

d
= +4.0�

     a = 4.0 m s–2 along y- direction

At  t = 1.0 s,  ˆ ˆ3.0 4.0v = i + j

It’s magnitude is 
2 2 1-= 3 4 5.0 m sv + =

and direction is

-1 1 4
= tan tan 53

3

y

x

v

v
θ −    °= ≅   

  
with x-axis.

t

4.8 MOTION IN A PLANE WITH CONSTANT
ACCELERATION

Suppose that an object is moving in x-y plane
and its acceleration a is constant.  Over an
interval of time, the average acceleration will
equal this constant value. Now, let the velocity
of the object be v0 at time t = 0 and v at time t.

Then, by definition

a
v v v v0 0=

−
−

=
−

t t0

Or, v v a0= + t (4.33a)

In terms of components :

v v a tx ox x= +

v v a ty oy y= + (4.33b)

Let us now find how the position r changes with
time. We follow the method used in the one-
dimensional case. Let r

o
 and r be the position

vectors of the particle at time 0 and t and let the
velocities at these instants be v

o
 and v. Then,

over this time interval t, the average velocity is
(v

o
 + v)/2. The displacement is the average

velocity multiplied by the time interval :

r r
v v v a v

0
0 0 0− =

+





=
+( ) +




2 2
t

t
t

Fig. 4.15 The average acceleration for three time intervals (a) ∆t1, (b) ∆t2, and (c) ∆t3, (∆t1> ∆t2> ∆t3). (d) In the

limit ∆t g0, the average acceleration becomes the acceleration.
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t

        
21

2
t t= +0v a

Or, r r v a0 0= + +t t
1

2
2 (4.34a)

It can be easily verified that the derivative of

Eq. (4.34a), i.e. 
d

d

r

t
 gives Eq.(4.33a) and it also

satisfies the condition that at t=0, r = r
o
.

Equation (4.34a) can be written in component
form as

x x v t a tox x= + +0
21

2

21

2
0 oy yy y v t a t= + + (4.34b)

One immediate interpretation of Eq.(4.34b) is that
the  motions in x- and y-directions can be treated
independently of each other.  That is, motion in
a plane (two-dimensions) can be treated as two
separate simultaneous one-dimensional
motions with constant acceleration along two
perpendicular directions.  This is an important
result and is useful in analysing motion of objects
in two dimensions. A similar result holds for three
dimensions. The choice of perpendicular
directions is convenient in many physical
situations, as we shall see in section 4.10 for
projectile motion.

Example 4.5 A particle starts from origin
at t = 0 with a velocity 5.0 î m/s and moves
in x-y plane under action of a force which
produces a constant acceleration of

(3.0i$$$$$+2.0j$$$$$ ) m/s2. (a) What is the

y-coordinate of the particle at the instant
its x-coordinate is 84 m ? (b) What is the
speed of the particle at this time ?

Answer  From Eq. (4.34a) for r0
 
= 0, the position

of the particle is given by

( ) 21

2
t t t= +0r v a

( ) ( ) 2ˆ ˆ ˆ5.0 1/2 3.0 2.0t t= + +i i j

( )2 2ˆ ˆ5.0 1.5 1.0t t t= + +i j

Therefore, ( ) 25.0 1.5x t t t= +

( ) 21.0y t t= +

Given x (t) = 84 m, t = ?

5.0 t + 1.5 t 2 = 84 ⇒⇒⇒⇒⇒ t = 6 s
At t = 6 s,  y = 1.0 (6)2 = 36.0 m

 Now, the velocity ( )d ˆ ˆ5.0 3.0 2.0
d

t t
t

= = + +
r

v i j

At   t = 6 s,  v i j= +23. � �0 12.0

speed  
2 2 123 12 26 m s−= = + ≅v . t

4.9 RELATIVE VELOCITY IN TWO
DIMENSIONS

The concept of relative velocity, introduced in
section 3.7 for motion along a straight line, can
be easily extended to include motion in a plane
or in three dimensions. Suppose that two objects
A and B are moving with velocities v

A
 and v

B

(each with respect to some common frame of
reference, say ground.). Then, velocity of object
A relative to that of B is :

v
AB 

= v
A 
– v

B
(4.35a)

and similarly, the velocity of object B relative to

that of A is :
v

BA  
=  v

B 
–

  
v

A

Therefore, v
AB   

= – v
BA

        (4.35b)

and, v vAB BA= (4.35c)

Example 4.6   Rain is falling vertically with
a speed of 35 m s–1. A woman rides a bicycle
with a speed of 12 m s–1  in east to west
direction. What is the direction in which
she should hold her umbrella ?

Answer  In  Fig. 4.16 v
r  
represents the velocity

of rain and v
b 
, the velocity of  the bicycle, the

woman is riding. Both these velocities are with
respect to the ground. Since the woman is riding
a bicycle, the velocity of rain as  experienced by

Fig. 4.16

her is the velocity of rain relative to the velocity
of the bicycle she is riding. That is  v

rb 
= v

r 
–

  
v

b
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This relative velocity vector as shown in
Fig. 4.16 makes an angle θ  with the vertical. It is
given by

tan 
12

35
0.343  θ = = =

v

v

b

r

Or,      θ ≅ 19
�

Therefore, the woman should hold her

umbrella at an angle of about 19° with the

vertical towards the west.

Note carefully the difference between this

Example and the Example 4.1. In Example 4.1,

the boy experiences the resultant (vector

sum) of two velocities while in this example,

the woman experiences the velocity of rain

relative to the bicycle (the vector difference

of the two velocities). t

4.10  PROJECTILE MOTION

As an application of the ideas developed in the

previous sections, we consider the motion of a

projectile. An object that is in flight after being

thrown or projected is called a projectile.  Such

a projectile might be a football, a cricket ball, a

baseball or any other object. The motion of a

projectile may be thought of as the result of two

separate, simultaneously occurring components

of motions. One component is along a horizontal

direction without  any acceleration and the other

along the vertical direction with constant

acceleration due to the force of gravity. It was

Galileo who first stated this independency of the

horizontal and the vertical components of

projectile motion in his Dialogue on the great

world systems (1632).

In our discussion, we shall assume that the

air resistance has negligible effect on the motion

of the projectile. Suppose that the projectile is

launched with velocity v
o
 that makes an angle

θ
o
 with  the x-axis as shown in Fig. 4.17.

After the object has been projected, the

acceleration acting on it is that due to gravity

which is directed vertically downward:

a j= −g �

Or, a
x
 = 0, a

y
 = – g (4.36)

The components of initial velocity v
o
 are :

v
ox 

= v
o
 cos θo

v
oy

= v
o
 sin θo       (4.37)

If we take the initial position to be the origin of
the reference frame as shown in Fig. 4.17, we
have :

x
o 
= 0, y

o
 = 0

Then, Eq.(4.34b) becomes :

x = v
ox 

t = (v
o
 cos θ

o 
) t

and y = (v
o
 sin θ

o
 ) t – ( ½ )g t2       (4.38)

The components of velocity at time t can be
obtained using Eq.(4.33b) :

v
x
 = v

ox
 = v

o
 cos θ

o

v
y = v

o
 sin θ

o
 – g t (4.39)

Equation (4.38) gives the x-, and y-coordinates

of the position of a projectile at time t in terms of

two parameters — initial speed v
o
 and projection

angle θ
o
. Notice that the choice of mutually

perpendicular x-, and y-directions for the

analysis of the projectile motion has resulted in

a simplification. One of the components of

velocity, i.e. x-component remains constant

throughout the motion and only the

y- component changes, like an object in free fall

in vertical direction.  This is shown graphically

at few instants in Fig. 4.18. Note that at the point

of maximum height, v
y
= 0 and therefore,

θ = =−tan 01
v

v

y

x

Equation of path of a projectile

What is the shape of the path followed by the
projectile?  This can be seen by eliminating the
time between the expressions for x and y as
given in Eq. (4.38).  We obtain:

Fig 4.17   Motion of an object projected with velocity

v
o
 at angle θ

0
.
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t

t

( )
( )

2
o 2

o o

tan 
2 cos

g
y x x

v
θ

θ
= − (4.40)

Now, since g, θ
o 
and v

o
 are constants, Eq. (4.40)

is of the form y = a x + b x2, in which a and b are
constants.  This is the equation of a parabola,
i.e. the path of the projectile is a parabola
(Fig. 4.18).

Fig. 4.18  The path of a projectile is a parabola.

Time of maximum height

How much time does the projectile take to reach

the maximum height ?  Let this time be denoted

by t
m
.  Since at this point, v

y
= 0, we have from

Eq. (4.39):

v
y
 = v

o
 sinθ

o
 – g t

m
 = 0

Or, t
m
 = v

o
 sinθ

o 
/g                (4.41a)

The total time T
f  
during which the projectile is

in flight can be obtained by putting y = 0 in

Eq. (4.38). We get :

T
f
 = 2 (v

o
 sin θ

o
 )/g                  (4.41b)

T
f
  is known as the time of flight of the projectile.

We note that T
f
  = 2 t

m 
, which is expected

because of the symmetry of the parabolic path.

Maximum height of a projectile

The maximum height h
m
 reached by the

projectile can be calculated by substituting

t = t
m
 in Eq. (4.38) :

( )y h v
v

g

g v

g
m 0

0 0= =












 −













sin

sin

2

sin
0

0 0

2

θ
θ θ

Or,
( )

h
v

m

0
=

sin 0θ
2

2g
     (4.42)

Horizontal range of a projectile

The horizontal distance travelled by a projectile
from its initial position (x = y = 0) to the position
where it passes y = 0 during its fall is called the
horizontal range, R. It is the distance travelled
during the time of flight T

f
  . Therefore, the range

R is
R  = (v

o
 cos θ

o
) (T

f 
)

    =(v
o
 cos θ

o
)  (2 v

o
 sin θ

o
)/g

Or, R
v

g

0

2

=
 sin 2 0θ

(4.43a)

Equation (4.43a) shows that for a given
projection velocity v

o 
, R is maximum when sin

2θ
0
 is maximum, i.e., when θ

0
 = 450.

The maximum horizontal range is, therefore,

R
v

g
m

0

2

=     (4.43b)

Example 4.7 Galileo, in his book Two new
sciences, stated that “for elevations which
exceed or fall short of 45° by equal
amounts, the ranges are equal”. Prove this
statement.

Answer  For a projectile launched with velocity
v

o
 at an angle θ

o
 , the range is given by

0sin22
0v

R
g

θ
=

Now, for angles, (45° + α ) and ( 45° – α),  2θ
o 
is

(90° + 2α ) and  ( 90° – 2α ) , respectively. The
values of  sin (90° + 2α ) and  sin (90° – 2α ) are
the same, equal to that of cos 2α. Therefore,
ranges are equal for elevations which exceed or
fall short of 45° by equal amounts α.   t

Example 4.8  A hiker stands on the edge
of a cliff 490 m above the ground and
throws a stone horizontally with an initial
speed of 15 m s-1. Neglecting air resistance,
find the time taken by the stone to reach
the ground, and the speed with which it
hits the ground. (Take g = 9.8 m s-2 ).
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t

Answer   We choose the origin of the x-,and y-

axis at the edge of the cliff and t = 0 s at the

instant the stone is thrown. Choose the positive

direction of x-axis to be along the initial velocity

and the positive direction of y-axis to be the

vertically upward direction. The x-, and y-

components of the motion can be treated

independently. The equations of motion are :

x (t)  = x
o
 + v

ox
 t

y (t)  = y
o
 + v

oy
 
 
t +(1/2) a

y
 t2

Here, x
o
 = y

o
 = 0, v

oy
 = 0, a

y 
=

 
 
–g  = –9.8 m s-2,

v
ox

 = 15 m s-1.

The stone hits the  ground when y(t) = – 490 m.

– 490 m = –(1/2)(9.8) t2.

This gives     t =10 s.

The velocity components are v
x
 = v

ox 
 and

v
y
 = v

oy
 – g t

so that when the stone hits the ground :

v
ox
 = 15 m s–1

v
oy

 = 0 – 9.8 × 10 = – 98 m s–1

Therefore, the  speed of the stone is

2 215 98 99 m s2 2 1
x yv v  −+ = + =   t

Example 4.9 A cricket ball is thrown at a
speed of 28 m s–1 in a direction 30° above
the horizontal. Calculate (a) the maximum
height, (b) the time taken by the ball to
return to the same level, and (c) the
distance from the thrower to the point
where the ball returns to the same level.

Answer  (a) The maximum height is given by

( ) ( )
( )

2 2

o sin 28sin 30
 m

2 2 9.8

0

m

v
h

g

θ °
= =

     
=

×
×

=
14 14

2 9.8
10.0 m

(b) The time taken to return to the same level is
T

f 
= (2 v

o
 sin θ

o 
)/g = (2× 28 × sin 30° )/9.8

    = 28/9.8 s = 2.9 s
(c) The distance from the thrower to the point
where the ball returns to the same level is

R
( )2

o osin2 28 28 sin60
69 m

9.8

ov

g

θ × ×
= = =

t

4.11  UNIFORM CIRCULAR MOTION

When an object follows a circular path at a
constant speed, the motion of the object is called
uniform circular motion.  The word “uniform”
refers to the speed, which is uniform (constant)
throughout the motion.  Suppose an object is
moving with uniform speed v in a circle of radius
R as shown in Fig. 4.19. Since the velocity of the
object is changing continuously in direction, the
object undergoes acceleration. Let us find the
magnitude and the direction of this acceleration.

Neglecting air resistance - what does
the assumption really mean?

While treating the topic of projectile motion,
we have stated that we assume that the
air resistance has no effect on the motion
of the projectile. You must understand what
the statement really means. Friction, force
due to viscosity, air resistance are all
dissipative forces. In the presence of any of
such forces opposing motion, any object will
lose some part of its initial energy and
consequently, momentum too. Thus, a
projectile that traverses a parabolic path
would certainly show deviation from its
idealised trajectory in the presence of air
resistance. It will not hit the ground with
the same speed with which it was projected
from it. In the absence of air resistance, the
x-component of the velocity remains
constant and it is only the y-component that
undergoes a continuous change. However,
in the presence of air resistance, both of
these would get affected. That would mean
that the range would be less than the one
given by Eq. (4.43). Maximum height
attained would also be less than that
predicted by Eq. (4.42). Can you then,
anticipate the change in the time of flight?

In order to avoid air resistance, we will
have to perform the experiment in vacuum
or under low pressure, which is not easy.
When we use a phrase like ‘neglect air
resistance’, we imply that the change in
parameters such as range, height etc. is
much smaller than their values without air
resistance. The calculation without air
resistance is much simpler than that with
air resistance.

2018-19



PHYSICS80

Let r and r′ be the position vectors and v and
v′ the velocities of the object when it is at point P
and P ′ as shown in Fig. 4.19(a).  By definition,
velocity at a point is along the tangent at that
point in the direction of motion. The velocity
vectors v and v′ are as shown in Fig. 4.19(a1).
∆v is obtained in Fig. 4.19 (a2) using the triangle
law of vector addition. Since the path is circular,
v is perpendicular to r and so is v′ to r′.
Therefore, ∆v is perpendicular to ∆r. Since

average acceleration is along ∆v a
v

=










∆

∆t
, the

average acceleration a  is perpendicular to ∆r. If
we place ∆v on the line that bisects the angle
between r and r′, we see that it is directed towards
the centre of the circle. Figure 4.19(b) shows the
same quantities for smaller time interval. ∆v and

hence a  is again directed towards the centre.

In Fig. 4.19(c), ∆t� 0 and the average

acceleration becomes the instantaneous
acceleration. It is directed towards the centre*.
Thus, we find that the acceleration of an object
in uniform circular motion is always directed
towards the centre of the circle. Let us now find
the magnitude of the acceleration.

The magnitude of a is, by definition, given by

a
v

=
→∆

∆
∆t 0 t

Let the angle between position vectors r and

r′ be ∆θ.   Since the velocity vectors v and v′ are

always perpendicular to the position vectors, the

angle between them is also ∆θ . Therefore, the

triangle CPP ′ formed by the position vectors and

the triangle GHI formed by the velocity vectors
v, v′ and ∆v are similar (Fig. 4.19a).  Therefore,
the ratio of the base-length to side-length for
one of the triangles is equal to that of the other
triangle. That is :

∆ ∆v r

v R
=

Or, ∆
∆

v
r

= v
R

Therefore,

  a
v r r

=
→

=
→

=
→∆

∆

∆ ∆

∆

∆ ∆

∆

∆t 0 0 R R 0t t

v

t

v

t t

If ∆t is small, ∆θ will also be small and then arc
PP′ can be approximately taken to be|∆r|:

∆ ∆r ≅ v t

           
∆
∆
r

t
v≅

Or,
∆

∆

∆t 0 t
v

→
=

r

Therefore, the centripetal acceleration a
c
 is :

Fig. 4.19 Velocity and acceleration of an object in uniform circular motion.  The time interval ∆t decreases from

(a) to (c) where it is zero.  The acceleration is directed, at each point of the path, towards the centre of

the circle.

 * In the limit ∆t�0, ∆r becomes perpendicular to r. In this limit ∆v→ 0 and is consequently also perpendicular

    to  V. Therefore, the acceleration is directed towards the centre, at each point of the circular path.

lim

limlim lim

lim
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t

a
c
  =   

v

R

 
 
 

v = v2/R (4.44)

Thus, the acceleration of an object moving with

speed v in a circle of radius R has a magnitude

v
2
/R and is always directed towards the centre.

This is why this acceleration is called centripetal
acceleration (a term proposed by Newton). A
thorough analysis of centripetal acceleration was
first published in 1673 by the Dutch scientist
Christiaan Huygens (1629-1695) but it was
probably known to Newton also some years earlier.
“Centripetal” comes from a Greek term which means
‘centre-seeking’.  Since v and R are constant, the
magnitude of the centripetal acceleration is also
constant. However, the direction changes —
pointing always towards the centre.  Therefore, a
centripetal acceleration is not a constant vector.

We have another way of describing the
velocity and the acceleration of an object  in
uniform circular motion.  As the object moves
from P to P′ in time ∆t (= t′ – t), the line CP
(Fig. 4.19) turns through an angle ∆θ  as shown
in the figure. ∆θ  is called angular distance.  We
define the angular speed ω (Greek letter omega)
as the time rate of change of angular
displacement :

ω
θ

=
∆

∆t
     (4.45)

Now, if the distance travelled by the object
during the time ∆t is ∆s, i.e. PP′ is ∆s, then :

v
s

t
=

∆
∆

but ∆s = R ∆θ. Therefore :

v R
t

= =
∆

∆

θ
ωR 

v =  R ω (4.46)

We can express centripetal acceleration a
c
 in

terms of angular speed :

a
v

R

R

R
Rc = = =

2 2
2ω

ω
2

a Rc = ω 2 (4.47)

The time taken by an object to make one revolution
is known as its time period T and the number of
revolution made in one second is called its
frequency ν (=1/T ).  However, during this time the
distance moved by the object is s = 2πR.

Therefore, v = 2πR/T =2πRν (4.48)
In terms of frequency ν, we have

ω = 2πν
           v = 2πRν

a
c
 = 4π2 ν2R                                       (4.49)

Example 4.10 An insect trapped in a
circular groove of radius 12 cm moves along
the groove steadily and completes 7
revolutions in 100 s. (a) What is the
angular speed, and the linear speed of the
motion? (b) Is the acceleration vector a
constant vector ? What is its magnitude ?

Answer  This is an example of uniform circular
motion. Here R = 12 cm. The angular speed ω is
given by

ω = 2π/T = 2π × 7/100 = 0.44 rad/s

The linear speed v is :

v =ω R = 0.44 s-1 × 12 cm =  5.3 cm s-1

The direction of velocity v is along the tangent
to the circle at every point. The acceleration is
directed towards the centre of the circle. Since
this direction changes continuously,
acceleration here is not a constant vector.
However, the magnitude of acceleration is
constant:

a = ω2 R = (0.44 s–1)2 (12 cm)

         = 2.3 cm s-2 t
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SUMMARY

1. Scalar quantities are quantities with magnitudes only.  Examples are distance, speed,
mass and  temperature.

2. Vector quantities are quantities with magnitude and direction both.  Examples are
displacement, velocity and  acceleration. They obey special rules of vector algebra.

3. A vector A multiplied by a real number λ  is also a vector, whose magnitude is λ times

the magnitude of the vector A and whose direction is the same or opposite depending

upon whether λ is positive or negative.

4. Two vectors A and B may be added graphically using head-to-tail method or parallelogram

method.
5. Vector addition is commutative :

A + B = B + A
It also obeys the associative law :

(A + B) + C = A + (B + C)
6. A null or zero vector is a vector with zero magnitude.  Since the magnitude is zero, we

don’t have to specify its direction.  It has the properties :
A + 0 = A

     λ0 = 0
   0 A = 0

7. The subtraction of vector B from A is defined as the sum of A and –B :

A – B = A+ (–B)

8. A vector A can be resolved into component along two given vectors a and b lying in the
same plane :

A = λ a + µ b

where λ and µ  are real numbers.

9. A unit vector associated with a vector A has magnitude 1 and is along the vector A:

n̂
A

A
=

The unit vectors  � � �i,  j,  k  are vectors of unit magnitude and point in the direction of

the x-, y-, and z-axes, respectively in a right-handed coordinate system.
10. A vector A can be expressed as

A i + j= A Ax y
� �

where A
x
, A

y
 are its components along x-, and y -axes.  If vector A makes an angle θ

with the x-axis, then A
x
 = A cos θ, A

y
=A sin θ and  

2 2 ,  tan = .
y

x y

x

A
A A A

A
θ= = +A

11. Vectors can be conveniently added using analytical method.  If sum of two vectors A
and B, that lie in x-y plane, is R, then :

R i j= +R Rx y
� � , where,  R

x
 = A

x 
+ B

x
, and     R

y
 = A

y
 + B

y

12. The position vector of an object in x-y plane is given by r = i jx y� �+  and the

displacement from position r to position r’ is given by

∆r = r′− r

= ′ − + ′ −( ) ( ) x x y y� �i j

=  ∆ + ∆x y � �i j

13. If an object undergoes a displacement ∆r in time ∆t, its average velocity is given by

v = 
∆

∆

r

t
. The velocity of an object at time t is the limiting value of the average velocity

2018-19



MOTION IN A PLANE 83

as ∆t tends to zero :

v = 
∆

∆

∆
=

t → 0

r r

t t

d

d
.  It can be written in unit vector notation as :

v i j k= + +v v vx y z
� � �   where  

t

z
v 

t

y
v

t

x
v zyx d

d
=,

d

d
= ,

d

d
=

When position of an object is plotted on a coordinate system, v  is  always tangent to
the curve representing the path of the object.

14. If the velocity of an object changes from v to v′in time ∆t, then its average acceleration

is given by:  a
v v' v

=
−

=
∆

∆

∆t t
The acceleration a at any time t is the limiting value of  a  as  ∆t �0 :

a
v v

=
→

=
∆

∆

∆t t t0

d

d

In component form, we have : a i j k= + +a a ax y z
� � �

where,  a
dv

dt
,  a

dv

dt
,  a

dv

dtx
x

y
y

z
z= = =

15. If an object is moving in a plane with constant acceleration  
2 2= x ya a a= +a   and

its position vector at time t = 0 is r
o
, then at any other time t, it will be at a point given

by:

21

2
t t= + +o or r v a

and its velocity is given by :
v = v

o 
+ a t

where v
o 
is the velocity at time t = 0

In component form :

21

2
o ox xx x v t a t= + +

21

2
o oy yy y v t a t= + +

v v a tx ox x= +

v v a ty oy y= +

Motion in a plane can be treated as superposition of two separate simultaneous one-

dimensional motions along two perpendicular directions

16. An object that is in flight after being projected is called a projectile.  If an object is
projected with initial velocity v

o
 making an angle θ

o
 with x-axis and if we assume its

initial position to coincide with the origin of the coordinate system, then the position
and velocity of the projectile at time t are given by :

x = (v
o
 cos θ

o
) t

                  y = (v
o 
sin θ

o
) t − (1/2) g t2

v
x
 = v

ox
 = v

o
 cos θ

o

v
y
 = v

o
 sin θ

o
 − g t

       The path of a projectile is parabolic and is given by :

( )
( )

2

0 2
tan

coso o

gx
y x –

2 v
θ

θ
=

       The maximum height that a projectile attains is :

lim

lim
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h
v

2g
m

o o
=

( ) sin
2

q

The time taken to reach this height is :

g

v
t oo
m

θsin 
=

The horizontal distance travelled by a projectile from its initial position to the position
it passes y = 0 during its fall is called the range, R of the projectile.  It is :

2

sin2o
o

v
R

g
θ=

17. When an object follows a circular path at constant speed, the motion of the object is
called uniform circular motion. The magnitude of its acceleration is   a

c
 = v2 /R. The

direction of a
c
 is always towards the centre of the circle.

The angular speed ω, is the rate of change of angular distance. It is related to velocity
v by   v = ω R.  The acceleration is a

c
 = ω 2R.

If T is the time period of revolution of the object in circular motion and ν is its
frequency, we have ω = 2π ν, v = 2πνR,  a

c
 = 4π2ν2R
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POINTS TO PONDER

1. The path length traversed by an object between two points is, in general, not the same as
the magnitude of displacement. The displacement depends only on the end points; the
path length (as the name implies) depends on the actual path. The two quantities are
equal only if the object does not change its direction during the course of motion. In all
other cases, the path length is greater than the magnitude of displacement.

2. In view of point 1 above, the average speed of an object is greater than or equal to the
magnitude of the average velocity over a given time interval. The two are equal only if the
path length is equal to the magnitude of displacement.

3. The vector equations (4.33a) and (4.34a) do not involve any choice of axes. Of course,
you can always resolve them along any two independent axes.

4. The kinematic equations for uniform acceleration do not apply to the case of uniform
circular motion since in this case the magnitude of acceleration is constant but its
direction is changing.

5. An object subjected to two velocities v
1
 and v

2
 has a resultant velocity v = v

1
 + v

2
. Take

care to distinguish it from velocity of object 1 relative to velocity of object 2 : v
12

= v
1
 − v

2
.

Here v
1
 and v

2
 are velocities with reference to some common reference frame.

6. The resultant acceleration of an object in circular motion is towards the centre only if
the speed is constant.

7. The shape of the trajectory of the motion of an object is not determined by the acceleration
alone but also depends on the initial conditions of motion ( initial position and initial
velocity). For example, the trajectory of an object moving under the same acceleration
due to gravity can be a straight line or a parabola depending on the initial conditions.

EXERCISES

4.1 State, for each of the following physical quantities, if it is a scalar or a vector :
volume, mass, speed, acceleration, density, number of moles, velocity, angular
frequency, displacement, angular velocity.

4.2 Pick out the two scalar quantities in the following list :
force, angular momentum, work, current, linear momentum, electric field, average
velocity, magnetic moment, relative velocity.

4.3 Pick out the only vector quantity in the following list :
Temperature, pressure, impulse, time, power, total path length, energy, gravitational
potential, coefficient of friction, charge.

4.4 State with reasons, whether the following algebraic operations with scalar and vector
physical quantities are meaningful :
(a) adding any two scalars, (b) adding a scalar to a vector of the same dimensions ,
(c) multiplying any vector by any scalar, (d) multiplying any two scalars, (e) adding any
two vectors, (f) adding a component of a vector to the same vector.

4.5 Read each statement below carefully and state with  reasons, if it is true or false :
(a) The magnitude of a vector is always a scalar, (b) each component of a vector is
always a scalar, (c) the total path length is always equal to the magnitude of the
displacement vector of a particle. (d) the average speed of a particle (defined as total
path length divided by the time taken to cover the path) is either greater or equal to
the magnitude of average velocity of the particle over the same interval of time, (e)
Three vectors not lying in a plane can never add up to give a null vector.

4.6 Establish the following vector inequalities geometrically or otherwise :

(a) |a+b| <   |a| + |b|

(b) |a+b| >   ||a| −−−−−|b||
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Fig. 4.20

(c) |a−−−−−b| <   |a| + |b|

(d) |a−−−−−b| >    ||a| −−−−− |b||

When does the equality sign above apply?

4.7 Given a + b + c + d = 0, which of the following statements
are correct :

(a) a, b, c, and d must each be a null vector,

(b) The magnitude of (a + c) equals the magnitude of
( b + d),

(c) The magnitude of a can never be greater than the
sum of the magnitudes of b, c, and d,

(d) b + c must lie in the plane of a and d if a and d are
not collinear, and in the line of a and d,  if they are
collinear ?

4.8 Three girls skating on a circular ice ground of radius
200 m start from a point P on the edge of the ground
and reach a point Q diametrically opposite to P following
different paths as shown in Fig. 4.20. What is the
magnitude of the displacement vector for each ? For
which girl is this equal to the actual length of
path skate ?

4.9 A cyclist starts from the centre O of a circular park of radius 1 km, reaches the edge P
of the park, then cycles along the circumference, and returns to the centre along QO

as shown in Fig. 4.21.  If the round trip takes 10 min, what is the (a) net displacement,
(b) average velocity, and (c) average speed of the cyclist ?

Fig. 4.21

4.10 On an open ground, a motorist follows a track that turns to his left by an angle of  600

after every 500 m. Starting from a given turn, specify the displacement of the motorist
at the third, sixth and eighth turn. Compare the magnitude of the displacement with
the total path length covered by the motorist in each case.

4.11 A passenger arriving in a new town wishes to go from the station to a hotel located
10 km away on a straight road from the station.  A dishonest cabman takes him along
a circuitous path 23 km long and reaches the hotel in 28 min. What is (a) the average
speed of the taxi, (b) the magnitude of average velocity ?  Are the two equal ?

4.12 Rain is falling vertically with a speed of  30 m s-1. A woman rides a bicycle with a speed
of 10 m s-1  in the north to south direction. What is the direction in which she should
hold her umbrella ?

4.13 A man can swim with a speed of 4.0 km/h in still water. How long does he take to
cross a river 1.0 km wide if the river flows steadily at 3.0 km/h and he makes his

Q
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strokes normal to the river current?  How far down the river does he go when he
reaches the other bank ?

4.14 In a harbour, wind is blowing at the speed of 72 km/h and the flag on the mast of a boat
anchored in the harbour flutters along the N-E direction. If the boat starts moving at a
speed of 51 km/h to the north, what is the direction of the flag on the mast of the boat ?

4.15 The ceiling of a long hall is 25 m high.  What is the maximum horizontal distance that
a ball thrown with a speed  of 40 m s-1 can go without hitting the ceiling of the hall ?

4.16 A cricketer can throw a ball to a maximum horizontal distance of 100 m.  How much
high above the ground can the cricketer throw the same ball ?

4.17 A stone tied to the end of a string 80 cm long is whirled in a horizontal circle with a
constant speed.  If the stone makes 14 revolutions in 25 s, what is the magnitude and
direction of acceleration of the stone ?

4.18 An  aircraft executes  a  horizontal  loop of  radius 1.00 km  with a steady speed of 900
km/h. Compare its centripetal acceleration with the acceleration due to gravity.

4.19 Read each statement below carefully and state, with reasons, if it is true or false :
(a) The net acceleration of a particle in circular motion is always along the radius of

the circle towards the centre
(b) The velocity vector of a particle at a point is always along the tangent to the path

of the particle at that point
(c) The acceleration vector of a particle in uniform circular motion averaged over one
      cycle is a null vector

4.20 The position of a particle is given by

2 ˆ ˆ ˆ3.0 2.0 4.0 mt t= − +r i j k 

where t is in seconds and the coefficients  have the proper units for r to be in  metres.

(a) Find the v and a of the particle? (b) What is the magnitude and direction of
  velocity of the particle at t = 2.0 s ?

4.21 A particle starts from the origin at t = 0 s with a velocity of 10.0  j� m/s and moves in

the x-y plane with  a constant acceleration of ( )8.0 2.0� �i j+  m s-2. (a) At what time is

the x- coordinate of the particle 16 m?  What is the y-coordinate of the particle at
that time? (b) What is the speed of the particle at the time ?

4.22 �i   and �j  are unit vectors along x- and y- axis respectively. What is the magnitude

and direction of the vectors  � �i j+ , and � �i j−  ?  What are the components of a vector

A= 2 � �i j+ 3  along the directions of  � �i j+  and � �i j− ? [You may use graphical method]

4.23 For any arbitrary motion in space, which of the following relations are true :
(a) v

average
 = (1/2) (v (t

1
) + v (t

2
))

(b) v 
average

 = [r(t
2
) - r(t

1
) ] /(t

2
 – t

1
)

(c) v (t) = v (0) + a t
(d) r (t) = r (0) + v (0) t + (1/2) a t2

(e) a 
average

 =[ v (t
2
) - v (t

1
 )] /( t

2
 – t

1
)

(The ‘average’ stands for average of the quantity over the time interval t
1
 to t

2
)

4.24 Read each statement below carefully and state, with reasons and examples, if it is
true or false :

A scalar quantity is one that
(a) is conserved in a process
(b) can never take negative values
(c) must be dimensionless
(d) does not vary from one point to another in space
(e) has the same value for observers with different orientations of axes.

4.25 An aircraft is flying at a height of 3400 m above the ground. If the angle subtended at
a ground observation point by the aircraft positions 10.0 s apart is 30°, what is the
speed of the aircraft ?
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Additional Exercises

4.26 A vector has magnitude and direction.  Does it have a location in space ?  Can it vary
with time ?  Will two equal vectors a and b at different locations in space necessarily
have identical physical effects ?  Give examples in support of your answer.

4.27 A vector has both magnitude and direction. Does it mean that anything that has
magnitude and direction is necessarily a vector ? The rotation of a body can be specified
by the direction of the axis of rotation, and the angle of rotation about the axis.  Does
that make any rotation a vector ?

4.28 Can you associate vectors with (a) the length of a wire bent into a loop, (b) a plane
area, (c) a sphere ? Explain.

4.29 A bullet fired at an angle of 30° with the horizontal hits the ground 3.0 km away. By
adjusting its angle of projection, can one hope to hit a target 5.0 km away ? Assume
the muzzle speed to be fixed, and neglect air resistance.

4.30 A fighter plane flying horizontally at an altitude of 1.5 km with speed 720 km/h passes
directly overhead an anti-aircraft gun. At what angle from the vertical should the gun
be fired for the shell with muzzle speed 600 m s-1 to hit the plane ? At what minimum
altitude should the pilot fly the plane to avoid being hit ? (Take g = 10 m s-2 ).

4.31 A cyclist is riding with a speed of 27 km/h. As he approaches a circular turn on the
road of radius  80 m, he applies brakes and reduces his speed at the constant rate of
0.50 m/s every second. What is  the magnitude and direction of the net acceleration of
the cyclist on the circular turn ?

4.32 (a) Show that for a projectile the angle between the velocity and the x-axis as a function

of time is given by

( ) 








 −

ox

0y

v

gtv
= 1-tantθ

(b) Shows that the projection angle  θ
0 
for a projectile launched from the origin is

given by

                   







0

R

4h
= m1-tanθ

where the symbols have their usual meaning.
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CHAPTER FIVE

LAWS OF MOTION

5.1  INTRODUCTION

In the preceding Chapter, our concern was to describe the
motion of a particle in space quantitatively. We saw that
uniform motion needs the concept of velocity alone whereas
non-uniform motion requires the concept of acceleration in
addition.  So far, we have not asked the question as to what
governs the motion of bodies. In this chapter, we turn to this
basic question.

Let us first guess the answer based on our common
experience. To move a football at rest, someone must kick it.
To throw a stone upwards, one has to  give it an upward
push.  A breeze causes the branches of a tree to swing; a
strong wind can even move heavy objects. A boat moves in a
flowing river without anyone rowing it. Clearly, some external
agency is needed to provide force to move a body from rest.
Likewise, an external force is needed also to retard or stop
motion.  You can stop a ball rolling down an inclined plane by
applying a force against the direction of its motion.

In these examples, the external agency of force (hands,
wind, stream, etc) is in contact with the object. This is not
always necessary. A stone released from the top of a building
accelerates downward due to the gravitational pull of the
earth.  A bar magnet can attract an iron nail from a distance.
This shows that external agencies (e.g. gravitational and
magnetic forces )  can exert  force on a body even from a
distance.

In short, a force is required to put a stationary body in
motion or stop a moving body, and some external agency is
needed to provide this force. The external agency may or may
not be in contact with the body.

So far so good. But what if a body is moving uniformly (e.g.
a skater moving straight with constant speed on a horizontal
ice slab) ?  Is an external force required to keep a body in
uniform motion?

5.1 Introduction

5.2 Aristotle’s fallacy

5.3 The law of inertia

5.4 Newton’s first law of motion

5.5 Newton’s second law of

motion

5.6 Newton’s third law of motion

5.7 Conservation of momentum

5.8 Equilibrium of a particle

5.9 Common forces in mechanics

5.10 Circular motion

5.11 Solving problems in

mechanics

Summary

Points to ponder

Exercises

Additional exercises
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5.2  ARISTOTLE’S  FALLACY

The question posed above appears to be simple.
However, it took ages to answer it. Indeed, the
correct answer to this question given by Galileo
in the seventeenth century was the foundation
of Newtonian mechanics, which signalled the
birth of modern science.

The Greek thinker,  Aristotle (384 B.C– 322
B.C.), held the view that if a body is moving,
something external is required to keep it moving.
According to this view, for example, an arrow
shot from a bow keeps flying since the air behind
the arrow keeps pushing it. The view was part of
an elaborate framework of ideas developed by
Aristotle on the motion of bodies in the universe.
Most of the Aristotelian ideas on motion are now
known to be wrong and need not concern us.
For our purpose here, the Aristotelian law of
motion may be phrased thus: An external force
is required  to keep a body in motion.

Aristotelian law of motion is flawed, as we shall
see.  However, it is a natural view that anyone
would hold from common experience. Even a
small child playing with a simple (non-electric)
toy-car on a floor knows intuitively that it needs
to constantly drag the string attached to the toy-
car with some force to keep it going.  If it releases
the string, it comes to rest. This experience is
common to most terrestrial motion. External
forces seem to be needed to keep bodies in
motion. Left to themselves, all bodies eventually
come to rest.

What is the flaw in Aristotle’s argument? The
answer is: a moving toy car comes to rest because
the external force of friction on the car by the floor
opposes its motion. To counter this force, the child
has to apply an external force on the car in the
direction of motion.  When the car is in uniform
motion, there is no net external force acting on it:
the force by the child cancels the force ( friction)
by the floor.  The corollary is: if there were no friction,
the child would not be required to apply any force
to keep the toy car in uniform motion.

The opposing forces such as friction (solids)
and viscous forces (for fluids) are always present
in the natural world.  This explains why forces
by external agencies are necessary to overcome
the frictional forces to keep bodies in uniform
motion. Now we understand  where Aristotle
went wrong.  He coded this practical experience
in the form of a basic argument.  To get at the

true law of nature for forces and motion, one has
to imagine a world in which uniform motion is
possible with no frictional forces opposing. This
is what Galileo did.

5.3  THE LAW OF INERTIA

Galileo studied motion of objects on an inclined
plane.  Objects (i) moving down an inclined plane
accelerate, while those (ii) moving up retard.
(iii )  Motion on a horizontal plane  is an
intermediate situation.  Galileo concluded that
an object moving on a frictionless horizontal
plane must neither have acceleration nor
retardation, i.e. it should move with constant
velocity (Fig. 5.1(a)).

(i) (ii) (iii)
Fig. 5.1(a)

Another experiment by Galileo leading to the
same conclusion involves a double inclined plane.
A ball released from rest on one of the planes rolls
down and climbs up the other. If the planes are
smooth, the final height of the ball is nearly the
same as the initial height (a little less but never
greater). In the ideal situation, when friction is
absent, the final height of the ball is the same
as its initial height.

If the slope of the second plane is decreased
and the experiment repeated, the ball will still
reach the same height, but in doing so, it will
travel a longer distance.  In the limiting case, when
the slope of the second plane is zero (i.e. is a
horizontal) the ball travels an infinite distance.
In other words, its motion never ceases. This is,
of course, an idealised situation (Fig. 5.1(b)).

Fig. 5.1(b) The law of inertia was inferred by Galileo

from observations of motion of a ball on a

double inclined plane.
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In practice, the ball does come to a stop after
moving a finite distance on the horizontal plane,
because of the opposing force of friction which
can never be totally eliminated.  However, if there
were no friction, the ball would continue  to move
with a constant velocity on the horizontal plane.

Galileo thus, arrived at a new insight on
motion that had eluded Aristotle and those who
followed him.  The state of rest and the state of
uniform linear motion (motion with constant
velocity) are equivalent. In both cases, there is

no net force acting on the body.  It is incorrect to
assume that a net force is needed to keep a body
in uniform motion. To maintain a body in
uniform motion, we need to apply an external
force to ecounter the frictional force, so that
the two forces sum up to zero net external
force.

To summarise, if the net external force is zero,
a body at rest continues to remain at rest and a
body in motion continues to move with a uniform
velocity.  This property of the body is called
inertia. Inertia means ‘resistance to  change’.
A body does not change its state of rest or
uniform motion, unless an external force
compels it to change that state.

5.4  NEWTON’S FIRST LAW OF MOTION

Galileo’s simple, but revolutionary ideas
dethroned Aristotelian mechanics. A new
mechanics had to be developed. This task was

Ideas on Motion in Ancient Indian Science

Ancient Indian thinkers had arrived at an elaborate system of ideas on motion. Force, the cause of
motion, was thought to be of different kinds : force due to continuous pressure (nodan), as the force
of wind on a sailing vessel; impact (abhighat), as when a potter’s rod strikes the wheel; persistent
tendency (sanskara) to move in a straight line(vega) or restoration of shape in an elastic body;
transmitted force by a string, rod, etc. The notion of (vega) in the Vaisesika theory of motion perhaps
comes closest to the concept of inertia.  Vega, the tendency to move in a straight line, was thought to
be opposed by contact with objects including atmosphere, a parallel to the ideas of friction and air
resistance.  It was correctly summarised that the different kinds of motion (translational, rotational
and vibrational) of an extended body arise from only the translational motion of its constituent
particles. A falling leaf in the wind may have downward motion as a whole (patan) and also rotational
and vibrational motion (bhraman, spandan), but each particle of the leaf at an instant only has a
definite (small) displacement. There was considerable focus in Indian thought on measurement of
motion and units of length and time.  It was known that the position of a particle in space can be
indicated by distance measured along three axes.  Bhaskara (1150 A.D.) had introduced the concept
of ‘instantaneous motion’ (tatkaliki gati), which anticipated the modern notion of instantaneous
velocity using Differential Calculus. The difference between a wave and a current (of water) was clearly
understood; a current is a motion of particles of water under gravity and fluidity while a wave results
from the transmission of vibrations of water particles.

accomplished almost single-handedly by Isaac
Newton, one of the greatest scientists of all times.

Newton built on Galileo’s ideas and laid the
foundation of mechanics in terms of three laws
of  motion that go by his name.  Galileo’s law of
inertia was his starting point which he
formulated as the first law of motion:

Every body continues to be in its state
of rest or of uniform motion in a straight
line unless compelled by some external
force to act otherwise.

The state of rest or uniform linear motion both
imply zero acceleration. The first law of motion  can,
therefore, be simply expressed as:
If the net external force on a body is zero, its
acceleration is zero.  Acceleration can be non
zero only if there is a net external force on
the body.

Two kinds of situations are encountered in the

application of this law in practice. In some

examples, we know that the net external force

on the object is zero. In that case we can

conclude that the acceleration of the object is

zero.  For example, a spaceship out in

interstellar space, far from all other objects and

with all its rockets turned off, has no net

external force acting on it.  Its acceleration,

according to the first law, must be zero.  If it is

in motion, it must continue to move with a

uniform velocity.
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More often, however, we do not know all the

forces to begin with.  In that case, if we know

that an object is unaccelerated (i.e. it is either

at rest or in uniform linear motion), we can infer

from the first law that the net external force on

the object must be zero. Gravity is everywhere.

For terrestrial phenomena, in particular, every

object experiences gravitational force due to the

earth.  Also objects in motion generally experience

friction, viscous drag, etc. If then, on earth, an

object is at rest or in uniform linear motion, it is

not because there are no forces acting on it, but

because the various external forces cancel out

i.e. add up to zero net external force.
Consider a book at rest on a horizontal surface

Fig. (5.2(a)).  It is subject to two external forces :
the force due to gravity (i.e. its weight W) acting
downward and the upward force on the book by
the table, the normal force R . R is a self-adjusting
force. This is an example of the kind of situation
mentioned above. The forces are not quite known
fully but the state of motion is known. We observe
the book to be at rest.  Therefore, we conclude
from the first law that the magnitude of R equals
that of W. A statement often encountered is :
“Since W = R, forces cancel and, therefore, the book
is at rest”. This is incorrect reasoning. The correct
statement is : “Since the book is observed to be at
rest, the net external force on it must be zero,
according to the first law. This implies that the

Galileo Galilei, born in Pisa, Italy in 1564 was a key figure in the scientific revolution
in Europe about four centuries ago.  Galileo proposed the concept of acceleration.
From experiments on motion of bodies on inclined planes or falling freely, he
contradicted the Aristotelian notion that a force was required to keep a body in
motion, and that heavier bodies fall faster than lighter bodies under gravity.  He
thus arrived at the law of inertia that was the starting point of the subsequent
epochal work of Isaac Newton.

Galileo’s discoveries in astronomy were equally revolutionary.  In 1609, he designed
his own telescope (invented earlier in Holland) and used it to make a number of
startling  observations :  mountains  and depressions on  the  surface of the moon;
dark spots on the sun; the moons of Jupiter and the phases of Venus.  He concluded
that the Milky Way derived its luminosity because of a large number of stars not visible to the naked eye.
In his masterpiece of scientific reasoning : Dialogue on the Two Chief World Systems, Galileo advocated
the heliocentric theory of the solar system proposed by Copernicus, which eventually got universal
acceptance.

With Galileo came a turning point in the very method of scientific inquiry. Science was no longer
merely observations of nature and inferences from them. Science meant devising and doing experiments
to verify or refute theories. Science meant measurement of quantities and a search for mathematical

relations between them. Not undeservedly, many regard Galileo as the father of modern science.

normal force R  must be equal and opposite to the
weight W ”.

Fig. 5.2 (a) a book at rest on the table, and (b) a car

moving with uniform velocity. The net force

is zero in each case.

Consider the motion of a car starting from

rest, picking up speed and then moving on a

smooth straight road with uniform speed (Fig.

(5.2(b)).  When the car is stationary, there is no

net force acting on it. During pick-up, it

accelerates. This must happen due to a net

external force. Note, it has to be an external force.

The acceleration of the car cannot be accounted

for by any internal force.  This might sound

surprising, but it is true.  The only conceivable

external force along the road is the force of

friction.  It is the frictional force that accelerates

the car as a whole.  (You will learn about friction

in section 5.9).  When the car moves with

constant velocity, there is no net external force.

Galileo Galilei (1564 - 1642)
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t

It relates the net external force to the
acceleration of the body.

Momentum
Momentum of a body is defined to be the product
of its mass m and velocity v, and is denoted
by p:

p = m v             (5.1)

Momentum is clearly a vector quantity.  The
following common experiences indicate the
importance of this quantity for considering the
effect of force on motion.

• Suppose a light-weight vehicle (say a small

car) and a heavy weight vehicle (say a loaded
truck) are parked on a horizontal road. We all
know that a much greater force is needed to
push the truck than the car to bring them to
the same speed in same time.  Similarly, a
greater opposing force is needed to stop a
heavy body than a light body in the same time,
if they are moving with the same speed.

• If two stones, one light and the other heavy,

are dropped from the top of a building, a
person on the ground will find it easier to catch
the light stone than the heavy stone.  The
mass of a body is thus an important
parameter that determines the effect of force
on its motion.

• Speed is another important parameter to
consider. A bullet fired by a gun can easily
pierce human tissue before it stops, resulting
in casualty.  The same bullet fired with
moderate speed will not cause much damage.
Thus for a given mass, the greater the speed,
the greater is the opposing force needed to stop
the body in a certain time.  Taken together,
the product of mass and velocity, that is
momentum, is evidently a relevant variable
of motion. The greater the change in the
momentum in a given time, the greater is the
force that needs to be applied.

• A seasoned cricketer catches a cricket ball
coming in with great speed far more easily
than a novice, who can hurt his hands in the
act.  One reason is that the cricketer allows a
longer time for his hands to stop the ball.  As
you may have noticed, he draws in the hands
backward in the act of catching the ball (Fig.
5.3).  The novice, on the other hand, keeps
his hands fixed and tries to catch the ball
almost instantly. He needs to provide a much
greater force to stop the ball instantly, and

The property of inertia contained in the First

law is evident in many situations.  Suppose we
are standing in a stationary  bus and the driver

starts the bus suddenly. We get thrown
backward with a jerk. Why ? Our feet are in touch
with the floor. If there were no friction, we would

remain where we were, while the floor of the bus
would simply slip forward under our feet and the

back of the bus would hit us.  However,
fortunately, there is some friction between the

feet and the floor.  If the start is not too sudden,
i.e. if the acceleration is moderate, the frictional
force would be enough to accelerate our feet

along with the bus.  But our body is not strictly
a rigid body. It is deformable, i.e. it allows some

relative displacement between different parts.
What this means is that while our feet go with
the bus, the rest of the body remains where it is

due to inertia.  Relative to the bus, therefore, we
are thrown backward.  As soon as that happens,

however, the muscular forces on the rest of the
body (by the feet) come into play to move the body

along with the bus. A similar thing happens
when the bus suddenly stops.  Our feet stop due
to the friction which does not allow relative

motion between the feet and the floor of the bus.
But the rest of the body continues to move

forward due to inertia.  We are thrown forward.
The restoring muscular forces again come into
play and bring the body to rest.

Example 5.1  An astronaut accidentally
gets separated out of his small spaceship
accelerating in inter stellar space at a
constant rate of 100 m s–2.  What is the
acceleration of the astronaut the instant after
he is outside the spaceship ? (Assume that
there are no nearby stars to exert
gravitational force on him.)

Answer  Since there are no nearby stars to exert
gravitational force on him and the small
spaceship exerts negligible gravitational
attraction on him, the net force acting on the
astronaut, once he is out of the spaceship, is
zero. By the first law of motion the acceleration
of the astronaut is zero.             t

5.5  NEWTON’S SECOND LAW OF MOTION

The first law refers to the simple case when the
net external force on a body is zero.  The second
law of motion refers to the general situation when
there is a net external force acting on the body.
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this hurts. The conclusion is clear: force not
only depends on the change in momentum,
but also on how fast the change is brought
about.  The same change in momentum
brought about in a shorter time needs a
greater applied force. In short, the greater the
rate of change of momentum, the greater is
the force.

Fig. 5.3 Force not only depends on the change in

momentum but also on how fast the change

is brought about. A seasoned cricketer draws

in his hands during a catch, allowing greater

time for the ball to stop and hence requires a

smaller force.

• Observations confirm that the product of

mass and velocity (i.e. momentum) is basic to

the effect of force on motion.  Suppose a fixed

force is applied for a certain interval of time

on two bodies of different masses, initially at

rest,  the lighter body picks up a greater speed

than the heavier body.  However, at the end of

the time interval, observations show that each

body acquires the same momentum.  Thus

the same force for the same time causes

the same change in momentum for

different bodies.  This is a crucial clue to the

second law of motion.

• In the preceding observations, the vector

character of momentum has not been evident.

In the examples so far, momentum and change

in momentum both have the same direction.

But this is not always the case.  Suppose a

stone is rotated with uniform speed in a

horizontal plane by means of a string, the

magnitude of momentum is fixed, but its

direction changes (Fig. 5.4). A force is needed

to cause this change in momentum vector.

This force is provided by our hand through
the string.  Experience suggests that our hand
needs to exert a greater force if the stone is
rotated at greater speed or in a circle of
smaller radius, or both. This corresponds to
greater acceleration or equivalently a greater
rate of change in momentum vector. This
suggests that the greater the rate of change
in momentum vector the greater is the force
applied.

Fig. 5.4 Force is necessary  for changing the direction

of momentum, even if its magnitude is

constant. We can feel this while rotating a

stone in a horizontal circle with uniform speed

by means of a string.

These qualitative observations lead to the
second law of motion expressed by Newton as
follows :

The rate of change of momentum of a body is
directly proportional to the applied force and
takes place in the direction in which the force
acts.

Thus, if under the action of a force F for time
interval ∆t, the velocity of a body of mass m

changes from v to v + ∆v i.e. its initial momentum

p = m v changes by m∆ = ∆p v . According to the

Second Law,

            or     k
t t

∆ ∆
∝ =

∆ ∆

p p
F F

where k  is a constant of proportionality.  Taking

the limit ∆t → 0,  the term 
t∆

∆p
 becomes the

derivative or differential co-efficient of p with

respect to t, denoted by 
d

dt

p
.  Thus
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t

    
d

d
k

t
=

p
F (5.2)

For a body of fixed mass m,

   ( )
d d d

d d d
m m m 

t t t
= = =

p v
v a      (5.3)

i.e the Second Law can also be written as
             F  =   k m a         (5.4)

which shows that force is proportional to the

product of mass m and acceleration a.

The unit of force has not been defined so far.

In fact, we use Eq. (5.4) to define the unit of force.

We, therefore, have the liberty to choose any

constant value for k.  For simplicity, we choose

k = 1. The second law then is

a
p

F  m
t

    
d

d
  == (5.5)

In SI unit force is one that causes an acceleration

of 1 m s-2 to a mass of 1 kg. This unit is known as

newton : 1 N = 1 kg m s-2.

Let us note at this stage some important points

about the second law :

1. In the second law, F = 0 implies a = 0. The

second law is obviously  consistent with the

first law.

2. The second law of motion is a vector law. It is

equivalent to three equations, one for each

component of the vectors :

F
p

t
max

x
x= =

d

d

F
p

t
may

y

y= =
d

d

z
z

z a m
t

p
F ==

d

d
                                  (5.6)

This means that if a force is not parallel to
the velocity of the body, but makes some angle
with it, it changes only the component of
velocity along the direction of force. The
component of velocity normal to the force
remains unchanged. For example, in the
motion of a projectile under the vertical
gravitational force, the horizontal component
of velocity remains unchanged (Fig. 5.5).

3. The second law of motion given by Eq. (5.5) is
applicable to a single point particle. The force

F in the law stands for the net external force

on the particle and a stands for acceleration

of the particle. It turns out, however, that the

law in the same form applies to a rigid body or,

even more generally, to a system of particles.

In that case, F refers to the total external force

on the system and a refers to the acceleration

of the system as a whole.  More precisely, a is

the acceleration of the centre of mass of the

system about which we shall study in detail in

chapter 7. Any internal forces in the system

are not to be included in F.

Fig. 5.5 Acceleration at an instant is determined by

the force at that instant. The moment after a

stone is dropped out of an accelerated train,

it has no horizontal acceleration or force, if

air resistance is neglected. The stone carries

no memory of its acceleration with the train

a moment ago.

4. The second law of motion is a local relation

which means that force F at a point in space

(location of the particle) at a certain instant

of time is related to a at that point at that

instant. Acceleration here and now is

determined by the force here and now, not by

any history of the motion of the particle

(See Fig. 5.5).

Example 5.2  A bullet of mass 0.04 kg

moving with a speed of 90 m s–1 enters a

heavy wooden block and is stopped after a

distance of 60 cm. What is the average

resistive force exerted by the block on  the

bullet?

Answer  The retardation ‘a’ of the bullet

(assumed constant) is given by

2–

2

u
a

s
= = 

2 2– 90 90
m s – 6750 m s

2 0.6
− −×

=
×
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The retarding force, by the second law of
motion, is

= 0.04 kg × 6750 m s-2 = 270 N

The actual resistive force, and therefore,
retardation of the bullet may not be uniform.  The
answer therefore, only indicates the average
resistive force.                      t

Example 5.3  The motion of a particle of

mass m is described by y = + 21

2
ut gt . Find

the force acting on the particle.

Answer  We know

21

2
y ut gt= +

Now,

d

d

y
v u gt

t
= = +

acceleration, 
d

d

v
a g

t
= =

Then the force is given by Eq.  (5.5)
F = ma = mg

Thus the given equation describes the motion
of a particle under acceleration due to gravity
and y is the position coordinate in the direction
of g. t

Impulse
We sometimes encounter examples where a large
force acts for a very short duration producing a
finite change in momentum of the body. For
example, when a ball hits a wall and bounces
back, the force on the ball by the wall acts for a
very short time when the two are in contact, yet
the force is large enough to reverse the momentum
of the ball. Often, in these situations, the force
and the time duration are difficult to ascertain
separately. However, the product of force and time,
which is the change in momentum of the body
remains a measurable quantity. This product is
called impulse:

Impulse  =  Force × time duration
          =  Change in momentum        (5.7)

A large force acting for a short time to produce a
finite change in momentum is called an impulsive

force. In the history of science, impulsive forces
were put in a conceptually different category from

ordinary forces.  Newtonian mechanics has no
such distinction.  Impulsive force is like any other
force – except that it is large and acts for a short
time.

Example 5.4  A batsman hits back a ball
straight in the direction of the bowler without
changing its initial speed of 12 m s–1.
If the mass of the ball is 0.15 kg, determine
the impulse imparted to the ball.  (Assume
linear motion of the ball)

Answer   Change in momentum
       =  0.15 × 12–(–0.15×12)

      =  3.6 N s,

Impulse  =  3.6 N s,
in the direction from the batsman to the bowler.

This is an example where the force on the ball
by the batsman and the time of contact of the
ball and the bat are difficult to know, but the
impulse is readily calculated.          t

5.6  NEWTON’S THIRD LAW OF MOTION

The second law relates the external force on a

body to its acceleration. What is the origin of the

external force on the body ?  What agency

provides the external force ?  The simple answer

in Newtonian mechanics is that the external

force on a body always arises due to some other

body.  Consider a pair of bodies A and B. B gives

rise to an external force on A.  A natural question

is: Does A in turn give rise to an external force

on B ?  In some examples, the answer seems

clear.  If you press a coiled spring, the spring is

compressed by the force of your hand.  The

compressed spring in turn exerts a force on your

hand and you can feel it.  But what if the bodies

are not in contact ?  The earth pulls a stone

downwards due to gravity.  Does the stone exert

a force on the earth ?  The answer is not obvious

since we hardly see the effect of the stone on the

earth. The answer according to Newton is: Yes,

the stone does exert an equal and opposite force

on the earth. We do not notice it since the earth

is very massive and the effect of a small force on

its motion is negligible.

Thus, according to Newtonian mechanics,

force never occurs singly in nature. Force is the

mutual interaction between two bodies.  Forces
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always occur in pairs. Further, the mutual forces

between two bodies are always equal and
opposite.  This idea was expressed by Newton in
the form of the third law of motion.

To every action, there is always an equal and
opposite reaction.

Newton’s wording of the third law is so crisp and
beautiful that it has become a part of common
language. For the same reason perhaps,
misconceptions about the third law abound.  Let
us note some important points about the third
law, particularly in regard to the usage of the
terms : action and reaction.

1. The terms action and reaction in the third law
mean nothing else but ‘force’. Using different
terms for the same physical concept
can sometimes be confusing. A simple
and clear way of stating the third law is as
follows :

Forces always occur in pairs.  Force on a
body A by B is equal and opposite to the
force on the body B by A.

2. The terms action and reaction in the third law
may give a wrong impression that action

comes before reaction i.e action is the cause
and reaction the effect. There is no cause-
effect relation implied in the third law.  The
force on A by B and the force on B by A act
at the same instant.  By the same reasoning,
any one of them may be called action and the
other reaction.

3. Action and reaction forces act on different
bodies, not on the same body. Consider a pair
of bodies A and B.  According to the third law,

F
AB

  =  – F
BA  

(5.8)

(force on A by B)  =  – (force on B by A)

Thus if we are considering the motion of any

one body (A or B), only one of the two forces is

relevant.  It is an error to add up the two forces

and claim that the net force is zero.

However, if you are considering the system

of two bodies as a whole, F
AB

 and F
BA

 are

internal forces of the system (A + B). They add

up to give a null force. Internal forces in a

body or a system of particles thus cancel away

in pairs.  This is an important fact that

enables the second law to be applicable to a

body or a system of particles (See Chapter 7).

Isaac Newton (1642 – 1727)

Isaac Newton was born in Woolsthorpe, England in 1642, the year Galileo died.

His extraordinary mathematical ability and mechanical aptitude remained hidden

from others in his school life.   In 1662, he went to Cambridge for undergraduate

studies.  A plague epidemic in 1665 forced the university town to close and Newton

had to return to his mother’s farm. There in two years of solitude, his dormant

creativity blossomed in a deluge of fundamental discoveries in mathematics and

physics : binomial theorem for negative and fractional exponents, the beginning of

calculus, the inverse square law of gravitation, the spectrum of white light, and so

on. Returning to Cambridge, he pursued his investigations in optics and devised a

reflecting telescope.

In 1684, encouraged by his friend Edmund Halley, Newton embarked on writing what was to be one of

the greatest scientific works ever published : The Principia Mathematica.  In it, he enunciated the three

laws of motion and the universal law of gravitation, which explained all the three Kepler’s laws of

planetary motion.  The book was packed with a host of path-breaking achievements : basic principles of

fluid mechanics, mathematics of wave motion, calculation of masses of the earth, the sun and other

planets, explanation of the precession of equinoxes, theory of tides, etc. In 1704, Newton brought out

another masterpiece Opticks that summarized his work on light and colour.

The scientific revolution triggered by Copernicus and steered vigorously ahead by Kepler and Galileo

was brought to a grand completion by Newton. Newtonian mechanics unified terrestrial and celestial

phenomena. The same mathematical equation governed the fall of an apple to the ground and the

motion of the moon around the earth.  The age of reason had dawned.
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Example 5.5  Two identical billiard balls
strike a rigid wall with the same speed but
at different angles, and get reflected without
any change in speed,  as shown in Fig. 5.6.
What is (i) the direction of the force on the
wall due to each ball? (ii) the ratio of the
magnitudes of impulses imparted to the
balls by the wall ?

       Fig. 5.6

Answer  An instinctive answer to (i) might be
that the force on the wall in case (a) is normal to
the wall, while that in case (b) is inclined at 30°
to the normal. This answer is wrong.  The force
on the wall is normal to the wall in both cases.

How to find the force on the wall? The trick is
to consider the force (or impulse) on  the ball
due to  the wall using the second law, and then
use the third law to answer (i). Let u be the speed
of each ball before and after collision with the
wall, and m the mass of each ball. Choose the x
and y axes as shown in the figure, and consider
the change in momentum of the ball in each
case :

Case (a)

( ) ( )initial initial
0x yp mu          p= =

( ) ( )finalfinal
0x yp mu          p= − =

Impulse is the change in momentum vector.
Therefore,

x-component of impulse  =  – 2 m u

y-component of impulse  =   0
Impulse and force are in the same direction.
Clearly, from above, the force on the ball due to
the wall is normal to the wall, along the negative
x-direction.  Using Newton’s third law of motion,
the force on the wall due to the ball is normal to
the wall along the positive x-direction. The

magnitude of force cannot be ascertained since
the small time taken for the collision has not
been specified in the problem.

Case (b)

( )  cos 30initialxp m u = � , ( )    sin 30initialyp m u = − �

( )  – cos 30finalxp m u = � , ( )   sin 30finalyp m u = − �

Note,  while p
x
 changes sign  after collision,  p

y

does not.  Therefore,

x-component of impulse = –2 m u  cos  30°
y-component of impulse = 0

The direction of impulse (and force) is the same
as in (a) and is normal to the wall along the
negative x direction.  As before, using Newton’s
third law, the force on the wall due to the ball is
normal to the wall along the positive x direction.

The ratio of the magnitudes  of the impulses
imparted to the balls in (a) and (b) is

( ) 2
2 / 2 cos30 1.2

3
m u m u = ≈�

         t

5.7  CONSERVATION OF MOMENTUM

The second and third laws of motion lead to
an important consequence: the law of
conservation of momentum.  Take a familiar
example. A bullet is fired  from a gun. If the force
on the bullet by the gun is F, the force on the gun
by the bullet is – F, according to the third law.
The two forces act for a common interval of time
∆t.  According to the second law, F ∆t is the
change in momentum of the bullet and – F ∆t is
the change in momentum of the gun. Since
initially, both are at rest, the change in
momentum equals the final momentum for each.
Thus if p

b
 is the momentum of the bullet after

firing and p
g 
is the recoil momentum of the gun,

p
g
 = – p

b
  i.e. p

b
 + p

g
 = 0.  That is, the total

momentum of the (bullet + gun) system is
conserved.

Thus in an isolated system (i.e. a system with
no external force), mutual forces between pairs
of particles in the system can cause momentum
change in individual particles, but since the
mutual forces for each pair are equal and
opposite, the momentum changes cancel in pairs
and the total momentum remains unchanged.
This fact is known as the law of conservation
of momentum :
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The total momentum of an isolated system

of interacting particles is conserved.

An important example of the application of the

law of conservation of momentum is the collision

of two bodies. Consider two bodies A and B, with

initial momenta p
A
 and p

B
. The bodies collide,

get apart, with final momenta p′
A
 and p′

B

respectively. By the Second Law

F p pAB A At∆ = ′ −
 
and

F p pBA B Bt∆ = ′ −

(where we have taken a common interval of time

for both forces i.e. the time for which the two

bodies are in contact.)

Since F FAB BA= −  by the third law,

( )′ − = − ′ −p p p pA A B B

i.e. ′ + ′ = +p p p pA B A B   (5.9)

which shows that the total final momentum of

the isolated system equals its initial momentum.

Notice that this is true whether the collision is

elastic or inelastic. In elastic collisions, there is

a second condition that the total initial kinetic

energy of the system equals the total final kinetic

energy (See Chapter 6).

5.8  EQUILIBRIUM OF A PARTICLE

Equilibrium of a particle in mechanics refers to

the situation when the net external force on the

particle is zero.*  According to the first law, this

means that, the particle is either at rest or in

uniform motion.

If two forces F
1
 and F

2
, act on a particle,

equilibrium requires

F
1  

= −
 
F

2
(5.10)

i.e. the two forces on the particle  must be equal

and opposite. Equilibrium under three

concurrent forces F
1
, F

2
  and F

3
 requires that

the vector sum of the three forces is zero.

F
1
  + F

2
  + F

3
  =  0                                  (5.11)

* Equilibrium of a body requires not only translational equilibrium (zero net external force) but also rotational

equilibrium (zero net external torque), as we shall see in Chapter 7.

Fig. 5.7  Equilibrium under concurrent forces.

In other words, the resultant of any two forces
say F

1
 and F

2
, obtained by the parallelogram

law of forces must be equal and opposite to the
third force, F

3
.  As seen in Fig. 5.7, the three

forces in equilibrium can be represented by the
sides of a triangle with the vector arrows taken
in the same sense. The result can be
generalised to any number of forces. A particle
is in equilibrium under the action of forces F

1
,

F
2
,... F

n
 if they can be represented by the sides

of a closed n-sided polygon with arrows directed
in the same sense.

Equation (5.11) implies that

F
1x 

+ F
2x 

+ F
3x

 = 0

F
1y

 + F
2y

 + F
3y

 = 0

F
1z

 + F
2z

 + F
3z

 = 0       (5.12)

where F
1x

, F
1y

 and F
1z

 are the components of F
1

along x, y and z directions respectively.

Example 5.6   See Fig. 5.8. A mass of 6 kg
is suspended by a  rope  of  length 2 m
from the ceiling.  A force of 50 N in the
horizontal direction is  applied  at  the mid-
point P of the rope, as shown. What is the
angle the rope makes with the vertical in
equilibrium ?  (Take g = 10 m s-2). Neglect
the mass of the rope.

(a) (b) (c)
Fig. 5.8
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Answer  Figures 5.8(b) and 5.8(c) are known as
free-body diagrams. Figure 5.8(b) is the free-body
diagram of W and Fig. 5.8(c) is the free-body
diagram of point P.

Consider the equilibrium of the weight W.
Clearly,T

2
 = 6 × 10 = 60 N.

Consider the equilibrium of the point P under
the action of three forces - the tensions T

1
 and

T
2
, and the horizontal force 50 N.  The horizontal

and vertical components of the resultant force
must vanish separately :

T
1
 cos θ  =  T

2
  =  60 N

T
1
  sin  θ   =  50  N

which gives that

Note the answer does not depend on the length
of the rope  (assumed massless) nor on the point
at which the horizontal force is applied. t

5.9  COMMON FORCES IN MECHANICS

In mechanics, we encounter several kinds of
forces. The gravitational force is, of course,
pervasive.  Every object on the earth experiences
the force of gravity due to the earth. Gravity also
governs the motion of celestial bodies.  The
gravitational force can act at a distance without
the need of any intervening medium.

All the other forces common in mechanics are
contact forces.* As the name suggests, a contact
force on an object arises due to contact with some
other object: solid or fluid. When bodies are in
contact (e.g.  a book resting on a table, a system
of rigid bodies connected by rods, hinges and

other types of supports), there are mutual
contact forces (for each pair of bodies) satisfying
the third law.  The component of contact force
normal to the surfaces in contact is called
normal reaction.  The component parallel to the
surfaces in contact is called friction.  Contact
forces arise also when solids are in contact with
fluids.  For example, for a solid immersed in a
fluid, there is an upward bouyant force equal to
the weight of the fluid displaced. The viscous
force, air resistance, etc are also examples of
contact forces (Fig. 5.9).

Two other common forces are tension in a
string and the force due to spring. When a spring
is compressed or extended by an external force,
a restoring force is generated. This force is
usually proportional to the compression or
elongation (for small displacements). The spring
force F is written as F = – k x where x is the
displacement and k is the force constant. The
negative sign denotes that the force is opposite
to the displacement from the unstretched state.
For an inextensible string, the force constant is
very high. The restoring force in a string is called
tension. It is customary to use a constant tension
T throughout the string. This assumption is true
for a string of negligible mass.

In Chapter 1, we learnt that there are four
fundamental forces in nature.  Of these, the weak
and strong forces appear in domains that do not
concern us here. Only the gravitational and
electrical forces are relevant in the context of
mechanics. The different contact forces of
mechanics mentioned above fundamentally arise
from electrical forces.  This may seem surprising

* We are not considering,  for simplicity, charged and magnetic bodies. For these, besides gravity, there are

electrical and magnetic non-contact forces.

Fig. 5.9  Some examples of contact forces in mechanics.
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since we are talking of uncharged and non-
magnetic bodies in mechanics. At the microscopic
level, all bodies are made of charged constituents
(nuclei and electrons) and the various contact
forces arising due to elasticity of bodies, molecular
collisions and impacts, etc. can ultimately be
traced to the electrical forces between the charged
constituents of different bodies. The detailed
microscopic origin of these forces is, however,
complex and not useful for handling problems in
mechanics at the macroscopic scale.  This is why
they are treated as different types of forces with
their characteristic properties determined
empirically.

5.9.1  Friction

Let us return to the example of a body of mass m
at rest on a horizontal table. The force of gravity
(mg)  is cancelled by the normal reaction force
(N) of the table. Now suppose a force F is applied
horizontally to the body.  We know from
experience that a small  applied force may not
be enough to move the body.  But if the applied
force F were the only external force on the body,
it must move with acceleration F/m, however
small. Clearly, the body remains at rest because
some other force comes into play in the
horizontal direction and opposes the applied
force F, resulting in zero net force on the body.
This force f

s
 parallel to the surface of the body in

contact with the table is known as frictional
force, or simply friction (Fig. 5.10(a)).  The
subscript stands for static friction to distinguish
it from kinetic friction f

k
 that we consider later

(Fig. 5.10(b)).  Note that  static friction does not

Fig. 5.10 Static and sliding friction: (a)  Impending

motion of the body is opposed by static

friction. When external force exceeds the

maximum limit of static friction, the body

begins to move.  (b) Once the body is in

motion, it is subject to sliding or kinetic friction

which opposes relative motion between the

two surfaces in contact. Kinetic friction is

usually less than the maximum value of static

exist by itself.  When there is no applied force,
there is no static friction. It comes into play the
moment there is an applied force. As the applied
force F increases, f

s
 also increases, remaining

equal and opposite to the applied force (up to a
certain limit), keeping the body at rest. Hence, it
is called static friction.  Static friction opposes
impending motion. The term impending motion
means motion that would take place (but does
not actually take place) under the applied force,
if friction were absent.

We know from experience that as the applied
force exceeds a certain limit, the body begins to
move.  It is found experimentally that the limiting

value of static friction ( )
maxsf  is independent of

the area of contact and varies with the normal
force(N)  approximately as :

( )
maxs sf N= µ (5.13)

where µ
s 

is a constant of proportionality
depending only on the nature of the surfaces in
contact. The constant µ

s 
 is called the coefficient

of static friction.  The law of static friction may
thus be written as

f
s
  ≤  µ

s 
 N (5.14)

If the applied force F exceeds ( )
maxsf

 the body

begins to slide on the surface. It is found
experimentally that when relative motion has
started, the frictional force decreases from the

static maximum value ( )
maxsf . Frictional force

that opposes relative motion between surfaces
in contact is called kinetic or sliding friction and
is denoted by f

k 
.
  
Kinetic friction, like static

friction, is found to be independent of the area
of contact.  Further, it is nearly independent of
the velocity. It satisfies a law similar to that for
static friction:

k k=f Nµ (5.15)

where µ
k′
 the coefficient of kinetic friction,

depends only on the surfaces in contact. As
mentioned above, experiments show that µ

k
 is

less than µ
s
. When relative motion has begun,

the acceleration of the body according to the
second law is ( F – f

k
)/m.  For a body moving with

constant velocity, F = f
k
. If the applied force on

the body is removed, its acceleration is – f
k 
/m

and it eventually comes to a stop.
       The laws of friction given above do not have
the status of fundamental laws like those for
gravitational, electric and magnetic forces. They
are empirical relations that are onlyfriction.

2018-19



PHYSICS102

t

t

approximately true.  Yet they are very useful in
practical calculations in mechanics.

Thus, when two bodies are in contact, each
experiences a contact force by the other. Friction,
by definition, is the component of the contact force
parallel to the surfaces in contact, which opposes
impending or actual relative motion between the
two surfaces. Note that it is not motion, but
relative motion that the frictional force opposes.
Consider a box lying in the compartment of a train
that is accelerating.  If the box is stationary
relative to the train, it is in fact accelerating along
with the train. What forces cause the acceleration
of the box?  Clearly, the only conceivable force in
the horizontal direction is the force of friction. If
there were no friction, the floor of the train would
slip by and the box would remain at its initial
position due to inertia (and hit the back side of
the train). This impending relative motion is
opposed by the static friction f

s
. Static friction

provides the same acceleration to the box as that
of the train, keeping it stationary relative to the
train.

Example 5.7 Determine the maximum
acceleration of the train in which a box
lying on its floor will remain stationary,
given that the co-efficient of static friction
between the box and the train’s floor is
0.15.

Answer  Since the acceleration of the box is due
to the static friction,

ma  =  f
s
 ≤ µ

s
 N  =  µ

s
  m g

i.e.   a  ≤  µ
s
 g

∴ a
max

 =  µ
s 
g  = 0.15  x 10 m s–2

= 1.5  m s–2  t

Example 5.8  See Fig. 5.11. A mass of 4 kg
rests on a horizontal plane. The plane is
gradually inclined until at an angle θ  =  15°
with the horizontal, the mass just begins to
slide. What is the coefficient of static friction
between the block and the surface ?

Fig. 5.11

Answer  The forces acting on a block of mass m
at rest on an inclined plane are (i) the weight
mg acting vertically downwards (ii) the normal
force N of the plane on the block, and (iii) the
static frictional force f

s
 opposing the impending

motion. In equilibrium, the resultant of these
forces must be zero.  Resolving the weight mg

along the two directions shown, we have
m g sin θ  =  f

s
   ,     m g  cos θ    =  N

As θ  increases, the self-adjusting frictional force
f
s
 increases until at θ = θ

max
,  f

s
 achieves its

maximum value, ( )
maxsf = µ

s
 N.

Therefore,

tan θ
max

  =  µ
s
  or  θ

max
  =  tan–1  µ

s

When  θ  becomes just a little more than  θ
max

 ,
there is a small net force on the block and it
begins to slide.  Note that  θ

max
 depends only on

µ
s
 and is  independent of the mass of the block.

For θ
max

   =  15°,
µ

s
      =  tan 15°

 =  0.27 t

Example 5.9  What is the acceleration of
the block  and  trolley system shown in a
Fig. 5.12(a), if the coefficient of kinetic friction
between the trolley and the surface is 0.04?
What is the tension in the string? (Take g =
10 m s-2).  Neglect the mass of the string.

(a)

(b) (c)

Fig. 5.12

t
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is the reason why discovery of the wheel has
been a major milestone in human history.

Rolling friction again has a complex origin,
though somewhat different from that of static
and sliding friction. During rolling, the surfaces
in contact get momentarily deformed a little, and
this results in a finite area (not a point) of the
body being in contact with the surface.  The net
effect is that the component of the contact force
parallel to the surface opposes motion.

We often regard friction as something
undesirable. In many situations, like in a
machine with different moving parts, friction
does have a negative role. It opposes relative
motion and thereby dissipates power in the form
of heat, etc. Lubricants are a way of reducing
kinetic friction in a machine. Another way is to
use ball bearings between two moving parts of a
machine [Fig. 5.13(a)]. Since the rolling friction
between ball bearings and the surfaces in
contact is very small, power dissipation is
reduced. A thin cushion of air maintained
between solid surfaces in relative motion is
another effective way of reducing friction (Fig.
5.13(a)).

In many practical situations, however, friction
is critically needed. Kinetic friction that
dissipates power is nevertheless important for
quickly stopping relative motion. It is made use
of by brakes in machines and automobiles.
Similarly, static friction is important in daily
life.  We are able to walk because of friction.  It
is impossible for a car to move on a very slippery
road. On an ordinary road, the friction between
the tyres and the road provides the necessary
external force to accelerate the car.

Answer  As the string is inextensible, and the
pully is smooth, the 3 kg block and the 20 kg
trolley both have same magnitude of
acceleration.  Applying second law to motion of
the block (Fig. 5.12(b)),

30 – T  = 3a

Apply the second law to motion of the trolley (Fig.
5.12(c)),

T – f
k
  =  20 a.

Now      f
k

= µ
k
 N,

Here        µ
k

= 0.04,
     N   =  20 x 10

= 200 N.
Thus the equation for the motion of the trolley is

T – 0.04 x 200 = 20 a Or  T – 8 = 20a.

These equations give a = 
22

23

 m s –2 = 0.96 m s-2

and T  = 27.1 N.                                                 t

Rolling friction

A body like a ring or a sphere rolling without
slipping over a horizontal plane will suffer no
friction, in principle. At every instant, there is
just one point of contact between the body and
the plane and this point has no motion relative
to the plane. In this ideal situation, kinetic or
static friction is zero and the body should
continue to roll with constant velocity.  We know,
in practice, this will not happen and some
resistance to motion (rolling friction) does occur,
i.e. to keep the body rolling, some applied force
is needed. For the same weight, rolling friction
is much smaller (even by 2 or 3 orders of
magnitude) than static or sliding friction.  This

Fig. 5.13 Some ways of reducing friction. (a) Ball bearings placed between moving parts of a machine.

(b) Compressed cushion of air between surfaces in relative motion.
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5.10  CIRCULAR MOTION

We have seen in Chapter 4 that acceleration of
a body moving in a circle of radius R  with uniform
speed v is v2/R directed towards the centre.
According to the second law, the force f

c
 providing

this acceleration is :

              

2

c

mv
f =

R
(5.16)

where m is the mass of the body.  This force
directed forwards the centre is called the
centripetal force. For a stone rotated in a circle
by a string, the centripetal force is provided by
the tension in the string.  The centripetal force
for motion of a planet around the sun is the

is the static friction that provides the centripetal
acceleration. Static friction opposes the
impending motion of the car moving away from
the circle. Using equation (5.14) & (5.16) we get
the result

= ≤
2

s

mv
f N

R
µ

2 s
s

RN
v Rg

m

µ
µ≤ = [∵N = mg]

which is independent of the mass of the car.
This shows that for a given value of µ

s
 and R,

there is a maximum speed of circular motion of
the car possible, namely

max sv Rgµ=       (5.18)

(a) (b)

Fig. 5.14  Circular motion of a car on (a) a level road, (b) a banked road.

gravitational force on the planet due to the sun.
For a car taking a circular turn on a horizontal
road, the centripetal force is the force of friction.

The circular motion of a car on a flat and
banked road give interesting application of the
laws of motion.

Motion of a car on a level road

Three forces act on the car (Fig. 5.14(a):
(i) The weight of the car, mg

(ii) Normal reaction, N
(iii) Frictional force, f
As there is no acceleration in the vertical
direction
N – mg = 0
N = mg      (5.17)
The centripetal force required for circular motion
is along the surface of the road, and is provided
by the component of the contact force between
road and the car tyres along the surface. This
by definition is the frictional force. Note that it

Motion of a car on a banked road

We can reduce the contribution of friction to the
circular motion of the car if the road is banked
(Fig. 5.14(b)). Since there is no acceleration along
the vertical direction, the net force along this
direction must be zero. Hence,

N cos θ  = mg + f sin θ         (5.19a)

The centripetal force is provided by the horizontal
components of N and f.

N sin θ  + f cos θ  = 
2mv

R
                (5.19b)

But f sNµ≤

Thus to obtain v
max 

 we put

sf Nµ= .

Then Eqs. (5.19a) and (5.19b) become

N cos θ  = mg + sNµ  sin θ     (5.20a)
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t

t

N sin θ  + sNµ cos θ  = mv2/R                 (5.20b)

From Eq. (5.20a), we obtain

– s

mg
N

cos sinθ µ θ
=

Substituting value of N in Eq. (5.20b), we get

( ) 2
max

–

s

s

mg sin cos mv

cos sin R

+
=

θ µ θ

θ µ θ

or 

1

2

max
1 –

s

s

tan
v Rg

tan

µ θ

µ θ

 +
=  
 

(5.21)

Comparing this with Eq. (5.18) we see that
maximum possible speed of a car on a banked
road is greater than that on a flat road.

For µs =  0  in  Eq. (5.21 ),
v

o  
=

  
( R g  tan θ ) ½ (5.22)

At this speed, frictional force is not needed at all
to provide the necessary centripetal force.
Driving at this speed on a banked road will cause
little wear and tear of the tyres. The same
equation also tells you that for v < v

o
, frictional

force will be up the slope and that a car can be
parked only if tan θ  ≤  µ

s
.

Example  5.10  A cyclist speeding at
18 km/h on a level road takes a sharp
circular turn of radius 3 m without reducing
the speed. The co-efficient of static friction
between the tyres and the road is 0.1. Will
the cyclist slip while taking the turn?

Answer   On an unbanked road, frictional force
alone can provide the centripetal force needed
to keep the cyclist moving on a circular turn
without  slipping. If the speed is too large, or if
the turn is too sharp (i.e. of too small a radius)
or both, the frictional force is not sufficient to
provide the necessary centripetal force, and the
cyclist slips. The condition for the cyclist not to
slip is given by Eq. (5.18) :

v2  ≤  µ
s
 R g

Now, R = 3 m,  g = 9.8 m s-2,  µ
s
 = 0.1.  That is,

µ
s
 R g = 2.94 m2 s-2. v = 18  km/h = 5  m s-1; i.e.,

v2 = 25  m2 s-2.  The condition is not obeyed.
The cyclist will slip while taking the circular
turn. t

Example 5.11 A circular racetrack of
radius 300 m is banked at an angle of 15°.
If the coefficient of friction between the
wheels of a race-car and the road is 0.2,
what is the (a) optimum speed of the race-
car to avoid wear and tear on its tyres, and
(b) maximum permissible speed to avoid
slipping ?

Answer  On a banked road, the horizontal
component of the normal force and the frictional
force contribute to provide centripetal force to
keep the car moving on a circular turn without
slipping.  At the optimum speed, the normal
reaction’s component is enough to provide the
needed centripetal force, and the frictional force
is not needed.  The optimum speed v

o
 is given by

Eq.  (5.22):
v

O
  =  (R g tan θ)1/2

Here R  =  300 m,  θ  =  15°,  g  =  9.8  m s-2;  we
have

v
O
  =  28.1  m s-1.

The maximum permissible speed v
max

 is given by
Eq. (5.21):

t

5.11  SOLVING PROBLEMS IN MECHANICS

The three laws of motion that you have learnt in
this chapter are the foundation of mechanics.
You should now be able to handle a large variety
of problems in mechanics.  A typical problem in
mechanics usually does not merely involve a
single body under the action of given forces.
More often, we will need to consider an assembly
of different bodies exerting forces on each other.
Besides, each body in the assembly experiences
the force of gravity.  When trying to solve a
problem of this type, it is useful to remember
the fact that we can choose any part of the
assembly and apply the laws of motion to that
part provided  we include all forces on the chosen
part due to the  remaining parts of the assembly.
We may call the chosen part of the assembly as
the system and the remaining part of the
assembly (plus any other agencies of forces) as
the environment. We have followed the same
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t

method in solved examples. To handle a typical
problem in mechanics systematically, one
should use the following steps :
(i) Draw a diagram showing schematically the

various parts of the assembly of bodies, the
links, supports, etc.

(ii) Choose a convenient part of the assembly
as one system.

(iii) Draw a separate diagram which shows this
system and all the forces on the system by
the remaining part of the assembly.  Include
also the forces on the system by other
agencies. Do not include the forces on the
environment by the system.  A diagram of
this type is known as ‘a free-body diagram’.
(Note this does not imply that the system
under consideration is without a net force).

(iv) In a free-body diagram, include information
about forces (their magnitudes and
directions) that are either given or you are
sure of (e.g., the direction of tension in a
string along its length).  The rest should be
treated as unknowns to be determined using
laws of motion.

(v) If necessary, follow the same procedure for
another choice of the system.  In doing so,
employ Newton’s third law.  That is, if in the
free-body diagram of A, the force on A due to
B is shown as F, then in the free-body
diagram of B, the force on B due to A should
be shown as –F.

The following example illustrates the above
procedure :

Example 5.12 See Fig. 5.15. A wooden
block of mass 2 kg rests on a soft horizontal
floor.  When an iron cylinder of mass 25 kg
is placed on top of the block, the floor yields
steadily and the block and the cylinder
together go down with an acceleration of
0.1 m s–2.  What is the action of the block
on the floor (a) before and (b) after the floor
yields ? Take g = 10 m s–2. Identify the
action-reaction pairs in the problem.

Answer

(a) The block is at rest on the floor. Its free-body
diagram shows two forces on the block, the
force of gravitational attraction by the earth
equal to 2 × 10 = 20 N; and the normal force
R of the floor on the block. By the First Law,

the net force on the block must be zero i.e.,
R = 20 N.  Using third law the action of the
block (i.e. the force exerted on the floor by
the block) is equal to 20 N and directed
vertically downwards.

(b) The system (block + cylinder) accelerates
downwards with 0.1 m s-2. The free-body
diagram of the system shows two forces on
the system : the force of gravity due to the
earth (270 N); and the normal force R ′ by the
floor.  Note, the free-body diagram of the
system does not show the internal forces
between the block and the cylinder.  Applying
the second law to the system,

270 – R′   =  27 × 0.1N
                 ie. R′   =  267.3 N

Fig. 5.15

By the third law, the  action  of the system on
the floor is equal to 267.3 N vertically downward.

Action-reaction pairs

For (a): (i) the force of gravity (20 N) on the block
by the earth (say, action); the force of
gravity on the earth by the block
(reaction) equal to 20 N directed
upwards (not shown in the figure).
(ii) the force on the floor by the block
(action); the force on the block by the
floor (reaction).

For (b): (i) the force of gravity (270 N) on the
system by the earth (say, action); the
force of gravity on the earth by the
system (reaction), equal to 270 N,
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directed upwards (not shown in the
figure).
(ii) the force on the floor by the system
(action); the force on the system by the
floor (reaction).  In addition, for (b), the
force on the block by the cylinder and
the force on the cylinder by the block
also constitute an action-reaction pair.

The important thing to remember is that an
action-reaction pair consists of mutual forces
which are always equal and opposite between
two bodies.  Two forces on the same body which
happen to be equal and opposite can never
constitute an action-reaction pair. The force of

gravity on the mass in (a) or (b) and the normal
force on the mass by the floor are not action-
reaction pairs. These forces happen to be equal
and opposite for (a) since the mass is at rest.
They are not so for case (b), as seen already.
The weight of the system is 270 N, while the
normal force R′ is 267.3 N. t

The practice of drawing free-body diagrams is
of great help in solving problems in mechanics.
It allows you to clearly define your system and
consider all forces on the system due to objects
that are not part of the system itself.  A number
of exercises in this and subsequent chapters will
help you cultivate this practice.

SUMMARY

1. Aristotle’s view that a force is necessary to keep a body in uniform motion is wrong.  A
force is necessary in practice to counter the opposing force of friction.

2. Galileo extrapolated simple observations on motion of bodies on inclined planes, and
arrived at the law of inertia.  Newton’s first law of motion is the same law rephrased
thus: “Everybody continues to be in its state of rest or of uniform motion in a straight line,

unless compelled by some external force to act otherwise”.  In simple terms, the First Law
is “If external force on a body is zero, its acceleration is zero”.

3. Momentum (p ) of a body is the product of its mass (m) and velocity (v) :
p  =  m v

4. Newton’s second law of motion :
The rate of change of momentum of a body is proportional to the applied force and takes

place in the direction in which the force acts.  Thus

d

d
k k m 

t
= =

p
F a

where F is the net external force on the body and a its acceleration. We set the constant
of proportionality k = 1 in SI units.  Then

d

d
m

t
= =

p
F a

The SI unit of force is newton : 1 N = 1 kg m s-2.

(a) The second law is consistent with the First Law (F = 0 implies a = 0)
(b) It is a vector equation
(c) It is applicable to a particle, and also to a body or a system of particles, provided  F

is the total external force on the system and a  is the acceleration of the system as
a whole.

(d) F at a point at a certain instant determines a at the same point at that instant.
That is the Second Law is a local law; a at an instant does not depend on the
history of motion.

5. Impulse is the product of force and time which equals change in momentum.
The notion of impulse is useful when a large force acts for a short time to produce a
measurable change in momentum. Since the time of action of the force is very short,
one can assume that there is no appreciable change in the position of the body during
the action of the impulsive force.

6. Newton’s third law of motion:
To every action, there is always an equal and opposite reaction
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In simple terms, the law can be stated thus :
Forces in nature always occur between pairs of bodies.  Force on a body A by body

B is equal and opposite to the force on the body B by A.

Action and reaction forces are simultaneous forces.  There is no cause-effect
relation between action and reaction.  Any of the two mutual forces can be
called action and the other reaction.  Action and reaction act on different
bodies and so they cannot be cancelled out.  The internal action and reaction
forces between different parts of a body do, however, sum to zero.

7. Law of Conservation of Momentum

The total momentum of an isolated system of particles is conserved.  The law
follows from the second and third law of motion.

8. Friction

Frictional force opposes (impending or actual) relative motion between two
surfaces in contact.  It is the component of the contact force along the common
tangent to the surface in contact.  Static friction f

s
 opposes impending relative

motion; kinetic friction f
k
 opposes actual relative motion. They are independent

of the area of contact and satisfy the following approximate laws :

( )
max

f f Rs s s≤ = µ

k
f R

k
= µ

µ
s
 (co-efficient of static friction) and µ

k
 (co-efficient of kinetic friction) are

constants characteristic of the pair of surfaces in contact.  It is found
experimentally that µ

k 
is less than µ

s 
.

POINTS TO PONDER

1. Force is not always in the direction of motion.  Depending on the situation, F
may be along v, opposite to v, normal to v or may make some other angle with
v.  In every case, it is parallel to acceleration.

2. If v = 0 at an instant, i.e. if a body is momentarily at rest, it does not mean that
force or acceleration are necessarily zero at that instant.  For example, when a
ball thrown upward reaches its maximum height, v = 0 but the force continues
to be its weight mg and the acceleration is not zero but g.

3. Force on a body at a given time is determined by the situation at the location of
the body at that time.  Force is not ‘carried’ by the body from its earlier history of
motion.  The moment after a stone is released out of an accelerated train, there is
no horizontal force (or acceleration) on the stone, if the effects of the surrounding
air are neglected.  The stone then has only the vertical force of gravity.

4. In the second law of motion F = m a, F stands for the net force due to all
material agencies external to the body.  a is the effect of the force.  ma should
not be regarded as yet another force, besides F.
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5. The centripetal force should not be regarded as yet another kind of force. It is
simply a name given to the force that provides inward radial acceleration to a
body in circular motion. We should always look for some material force like
tension, gravitational force, electrical force, friction, etc as the centripetal force
in any circular motion.

6. Static friction is a self-adjusting force up to its limit µ
s
 N (f

s 
≤ µ

s
 N).  Do not put

f
s
= µ

s 
N

 
 without being sure that the maximum value of static friction is coming

into play.
7. The familiar equation mg = R for a body on a table is true only if the body is in

equilibrium.  The two forces mg and R can be different (e.g. a body in an
accelerated lift). The equality of mg and R has no connection with the third
law.

8. The terms ‘action’ and ‘reaction’ in the third Law of Motion simply stand for
simultaneous mutual forces between a pair of bodies. Unlike their meaning in
ordinary language, action does not precede or cause reaction.  Action and reaction
act on different bodies.

9. The different terms like ‘friction’, ‘normal reaction’ ‘tension’, ‘air resistance’,
‘viscous drag’, ‘thrust’, ‘buoyancy’, ‘weight’, ‘centripetal force’ all stand for ‘force’
in different contexts.  For clarity, every force and its equivalent terms
encountered in mechanics should be reduced to the phrase ‘force on A by B’.

10. For applying the second law of motion, there is no conceptual distinction between
inanimate and animate objects.  An animate object such as a human also
requires an external  force to accelerate.  For example, without the external
force of friction, we cannot walk on the ground.

11. The objective concept of force in physics should not be confused with the
subjective concept of the ‘feeling of force’.  On a merry-go-around, all parts of
our body are subject to an  inward force,  but we have a feeling of being pushed
outward – the direction of impending motion.

EXERCISES

(For simplicity in numerical calculations, take g = 10 m s-2)
5.1 Give the magnitude and direction of the net force acting on

(a) a drop of rain falling down with a constant speed,
(b) a cork of mass 10 g floating  on water,
(c) a kite skillfully held stationary in the sky,
(d) a car moving with a constant velocity of 30 km/h on a rough road,
(e) a high-speed electron in space far from all material objects, and free of

electric and magnetic fields.

5.2 A  pebble of mass 0.05 kg is thrown vertically upwards.  Give the direction
and magnitude of the net force on the pebble,
(a) during its upward motion,

(b) during its downward motion,
(c) at the highest point where it is momentarily at rest.  Do your answers

change if the pebble was thrown at an angle of 45° with the horizontal
direction?

Ignore air resistance.

5.3 Give  the magnitude and direction of the net force acting on a stone of mass
0.1 kg,
(a) just after it is dropped from the window of a stationary train,
(b) just after it is dropped from the window of a train running at a constant

velocity of 36 km/h,
(c ) just after it is dropped from the window of a train accelerating with 1 m s-2,
(d) lying on the floor of a train which is accelerating with 1 m s-2, the stone

being at rest relative to the train.

Neglect air resistance throughout.

2018-19



PHYSICS110

5.4 One end of a string of length l is connected to a particle of mass m and the
other to a small peg on a smooth horizontal table. If the particle moves in a
circle with speed v the net force on the particle (directed towards the centre)
is :

(i)  T,  (ii) 
l

mv
T

2

− , (iii)  
l

mv
+T

2

, (iv)  0

T is the tension in the string. [Choose the correct alternative].

5.5 A constant retarding force of 50 N is applied to a body of mass 20 kg moving
initially with a speed of 15 m s-1. How long does the body take to stop ?

5.6 A constant force acting on a body of mass 3.0 kg changes its speed from 2.0 m s-1

to   3.5 m s-1 in 25 s.  The direction of the motion of the body remains
unchanged.  What is the magnitude and direction of the force ?

5.7 A body of mass 5 kg is acted upon by two perpendicular forces 8 N and 6 N.
Give the magnitude and direction of the acceleration of the body.

5.8 The driver of a three-wheeler moving with a speed of 36 km/h sees a child
standing in the middle of the road and brings his vehicle to rest in 4.0 s just
in time to save the child. What is the average retarding force on the vehicle ?
The mass of the three-wheeler is 400 kg and the mass of the driver is 65 kg.

5.9 A rocket with a lift-off mass 20,000 kg is blasted upwards with an initial
acceleration of 5.0 m s-2. Calculate the initial thrust (force) of the blast.

5.10 A body of mass 0.40 kg moving initially with a constant speed of 10 m s-1 to
the north is subject to a constant force of 8.0 N directed towards the south
for 30 s.  Take the instant the force is applied to be  t = 0, the position of the
body at that time to be x = 0, and predict its position at  t = –5 s, 25 s, 100 s.

5.11 A truck starts from rest and accelerates uniformly at 2.0 m s-2.  At t = 10 s, a
stone is dropped by a person standing on the top of the truck (6 m high from
the ground). What are the (a) velocity, and (b) acceleration of the stone at t =
11s ?  (Neglect air resistance.)

5.12 A bob of mass 0.1 kg hung from the ceiling of a room by a string 2 m long is
set into oscillation.  The speed of the bob at its mean position is 1 m s-1.
What is the trajectory of the bob if the string is cut when the bob is (a) at one
of its extreme positions, (b) at its mean position.

5.13 A man of mass 70 kg  stands on a weighing scale in a lift which is moving
(a) upwards with a uniform speed of 10 m s-1,
(b) downwards with a uniform acceleration of 5 m s-2,
(c) upwards with a uniform acceleration of 5 m s-2.

What would be the readings on the scale in each case?
(d) What would be the reading if the lift mechanism failed and it hurtled

down freely under gravity ?

5.14 Figure 5.16 shows the position-time graph of a particle of mass 4 kg.  What is
the (a) force on the particle for t < 0, t > 4 s, 0 < t < 4 s? (b) impulse at t = 0 and
t = 4 s ? (Consider one-dimensional motion only).

Fig. 5.16

5.15 Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal
surface are tied to the ends of a light string. A horizontal force F = 600 N is
applied to (i) A, (ii) B along the direction of string. What is the tension in the
string in each case?
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5.16 Two masses 8 kg and 12 kg are connected at the two ends of a light  inextensible
string that goes over a frictionless pulley.  Find the acceleration of the masses, and
the tension in the string when the masses are released.

5.17 A nucleus is at rest in the laboratory frame of reference.  Show that if it disintegrates
into two smaller nuclei the products must move in opposite directions.

5.18 Two billiard balls each of mass 0.05 kg moving in opposite directions with speed 6 m s-1

collide and rebound with the same speed.  What is the impulse imparted to each ball due
to the other ?

5.19 A shell of mass 0.020 kg is fired by a gun of mass 100 kg.  If the muzzle  speed of the
shell is 80 m s-1, what is the recoil speed of the gun ?

5.20 A batsman deflects a ball by an angle of 45° without changing its initial speed which is
equal to 54 km/h.  What is the impulse imparted to the ball ?  (Mass of the ball is 0.15 kg.)

5.21 A stone of mass 0.25 kg tied to the end of a string is whirled round in a circle of radius
1.5 m with a speed of 40 rev./min in a horizontal plane. What is the tension in  the
string ?  What is the maximum speed with which the stone can be whirled around if
the string can withstand a maximum tension of 200 N ?

5.22 If, in Exercise 5.21, the speed of the stone is increased beyond the maximum permissible
value, and the string breaks suddenly, which of the following correctly describes the
trajectory of the stone after the string breaks :
(a) the stone moves radially outwards,
(b) the  stone flies off tangentially from the instant the string breaks,
(c) the stone flies off at an angle with the tangent whose magnitude depends on the

 speed of the particle ?

5.23 Explain why
(a) a horse cannot pull a cart and run in empty space,
(b) passengers are thrown forward from their seats when a speeding bus stops
     suddenly,
(c) it is easier to pull a lawn mower than to push it,
(d) a cricketer moves his hands backwards while holding a catch.

Additional Exercises

5.24 Figure 5.17 shows the position-time graph of a body of mass 0.04 kg.  Suggest a
suitable physical context for this motion.  What is the time between two consecutive
impulses received by the body ? What is the magnitude of each impulse ?

Fig. 5.17

5.25 Figure 5.18 shows a man standing stationary with respect to a horizontal conveyor
belt that is accelerating with 1 m s-2. What is the net force on the man? If the
coefficient of static friction between the man’s shoes and the belt is 0.2, up to what
acceleration of the belt can the man continue to be stationary relative to the belt ?
(Mass of the man = 65 kg.)

Fig. 5.18
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Fig. 5.19

5.26 A stone of mass m tied to the end of a string revolves in a vertical circle of radius R.
The net forces at the lowest and highest points of the circle directed vertically
downwards are : [Choose the correct alternative]

Lowest Point Highest Point

(a)    mg – T
1

mg + T
2

(b)    mg + T
1

mg – T
2

(c)    mg + T
1
 – (m v 2

1 
) / R mg – T

2
 +  (m v 2

1 
) / R

(d)    mg – T
1
 – (m v 2

1 
) / R mg + T

2
 + (m v 2

1 
) / R

T
1
 and v

1
 denote the tension and speed at the lowest point. T

2
 and v

2 
denote

corresponding values at the highest point.

5.27 A helicopter of mass 1000 kg rises with a vertical acceleration of 15 m s-2. The crew
and the passengers weigh 300 kg. Give the magnitude and direction of the
(a) force on the floor by the crew and passengers,
(b) action of the rotor of the helicopter on the surrounding air,
(c) force on the helicopter due to the surrounding air.

5.28 A stream of water flowing horizontally with a speed of 15 m s-1 gushes out of a tube of
cross-sectional area 10-2 m2, and hits a vertical wall nearby. What is the force exerted
on the wall by the impact of water, assuming it does not rebound ?

5.29 Ten one-rupee coins are put on top of each other on a table.  Each coin has a mass m.
Give the magnitude and direction of
(a) the force on the  7th coin (counted from the bottom) due to all the coins on its top,
(b) the force on the 7th coin by the eighth coin,
(c) the reaction of the 6th coin on the 7th coin.

5.30 An aircraft executes a horizontal loop at a speed of 720 km/h with its wings banked
at 15°.  What is the radius of the loop ?

5.31 A train runs along an unbanked circular track of radius 30 m at a speed of 54 km/h.
The mass of the train is 106 kg.  What provides the centripetal force required for this
purpose — The engine or the rails ?  What is the angle of banking required to prevent
wearing out of the rail ?

5.32 A block of mass 25 kg is raised by a 50 kg man in two different ways as shown in
Fig. 5.19.  What is the action on the floor by the man in the two cases ?  If the floor
yields to a normal force of 700 N, which mode should the man adopt to lift the block
without the floor yielding ?
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5.33 A monkey of mass 40 kg climbs on a rope (Fig. 5.20) which
can stand a maximum tension of  600 N. In which of the
following cases will the rope break: the monkey
(a) climbs up with an acceleration of 6 m s-2

(b) climbs down with an acceleration of 4 m s-2

(c) climbs up with a uniform speed of 5 m s-1

(d) falls down the rope nearly freely under gravity?
(Ignore the mass of the rope).

5.34 Two  bodies A and B of masses 5 kg and 10 kg in contact with
each other rest on a table against a rigid wall (Fig. 5.21). The
coefficient of friction between the bodies and the table is
0.15.  A force of 200 N is applied horizontally to A.  What are
(a) the reaction of the partition (b) the action-reaction forces
between A and B ?  What happens when the wall is removed?
Does the answer to (b) change, when the bodies are in motion?
Ignore the difference between µ

s
 and µ

k
.

5.35 A block of mass 15 kg is placed on a long trolley. The coefficient of static friction
between the block and the trolley is 0.18.  The trolley accelerates from rest with
0.5 m s-2 for 20 s and then moves with uniform velocity.  Discuss the motion of the
block as viewed by (a) a stationary observer on the ground, (b) an observer moving with
the trolley.

5.36 The rear side of a truck is open and a box of 40 kg
mass is placed 5 m away from the open end as shown
in Fig. 5.22.  The coefficient of friction between the
box and the surface below it is 0.15.  On a straight
road, the truck starts from rest and accelerates with
2 m s-2.  At what distance from the starting point
does the box fall off the truck?  (Ignore the size of
the box).

5.37 A disc  revolves with a speed of 33
1

3
 rev/min, and has a radius of 15 cm. Two coins are

placed at 4 cm and 14 cm away from the centre of the record. If the co-efficient of friction
between the coins and the record is 0.15, which of the coins will revolve with the record ?

5.38 You may have seen in a circus a motorcyclist driving in vertical loops inside a ‘death-
well’ (a hollow spherical chamber with holes, so the spectators can watch from outside).
Explain clearly why the motorcyclist does not drop down when he is at the uppermost
point, with no support from below.  What is the minimum speed required at the
uppermost position to perform a vertical loop if the radius of the chamber is 25 m ?

5.39 A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of
radius 3 m rotating about its vertical axis with 200 rev/min.  The coefficient of
friction between the wall and his clothing is 0.15.  What is the minimum rotational
speed of the cylinder to enable the man to remain stuck to the wall (without falling)
when the floor is suddenly removed ?

5.40 A thin circular loop of radius R rotates about its vertical diameter with an angular
frequency ω.  Show that a small bead on the wire loop remains at its lowermost point

for ω ≤ g / R .  What  is the  angle made by the radius vector joining the centre to

the bead with the vertical downward direction for  ω = 2g / R  ?  Neglect friction.

Fig. 5.20

Fig. 5.21

Fig. 5.22
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CHAPTER SIX

WORK, ENERGY AND POWER

6.1  INTRODUCTION

The terms ‘work’, ‘energy’ and ‘power’ are frequently used
in everyday language. A farmer ploughing the field, a
construction worker carrying bricks, a student studying for
a competitive examination, an artist painting a beautiful
landscape, all are said to be working. In physics, however,
the word ‘Work’ covers a definite and precise meaning.
Somebody who has the capacity to work for 14-16 hours a
day is said to have a large stamina or energy. We admire a
long distance runner for her stamina or energy. Energy is
thus our capacity to do work. In Physics too, the term ‘energy’
is related to work in this sense, but as said above the term
‘work’ itself is defined much more precisely. The word ‘power’
is used in everyday life with different shades of meaning. In
karate or boxing we talk of ‘powerful’ punches. These are
delivered at a great speed. This shade of meaning is close to
the meaning of the word ‘power’ used in physics. We shall
find that there is at best a loose correlation between the
physical definitions and the physiological pictures these
terms generate in our minds. The aim of this chapter is to
develop an understanding of these three physical quantities.
Before we proceed to this task, we need to develop a
mathematical prerequisite, namely the scalar product of two
vectors.

6.1.1 The Scalar Product

We have learnt about vectors and their use in Chapter 4.
Physical quantities like displacement, velocity, acceleration,
force etc. are vectors. We have also learnt how vectors are
added or subtracted. We now need to know how vectors are
multiplied. There are two ways of multiplying vectors which
we shall come across : one way known as the scalar product
gives a scalar from two vectors and the other known as the
vector product produces a new vector from two vectors. We
shall look at the vector product in Chapter 7. Here we take
up the scalar product of two vectors. The scalar product or
dot product of any two vectors A and B, denoted as A.B (read

6.1 Introduction

6.2 Notions of work and kinetic

energy : The work-energy
theorem

6.3 Work

6.4 Kinetic energy

6.5 Work done by a variable

force

6.6 The work-energy theorem for

a variable force

6.7 The concept of potential

energy

6.8 The conservation of

mechanical energy

6.9 The potential energy of a

spring

6.10 Various forms of energy : the

law of conservation of energy

6.11 Power

6.12 Collisions

Summary

Points to ponder

Exercises

Additional exercises

Appendix 6.1
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A dot B) is defined as

A.B = A B cos θ (6.1a)

where θ  is the angle between the two vectors as
shown in Fig. 6.1(a). Since A, B and cos θ are
scalars, the dot product of A and B is a scalar
quantity. Each vector, A and B, has a direction
but their scalar product does not have a
direction.

From Eq. (6.1a), we have

A.B  = A (B cos θ )

       = B (A cos θ )

Geometrically, B cos θ is the projection of B onto
A in Fig.6.1 (b) and A cos θ  is the projection of A
onto B in Fig. 6.1 (c). So, A.B is the product of
the magnitude of A and the component of B along
A. Alternatively, it is the product of the
magnitude of B and the component of A along B.

Equation (6.1a) shows that the scalar product
follows the commutative law :

A.B = B.A

Scalar product obeys the distributive
law:

A. (B + C) = A.B + A.C

Further, A. (λ B) = λ (A.B)

where λ is a real number.

The proofs  of the above equations are left to
you as an exercise.

For unit vectors � � �i, j,k  we have

� � � � � �i i j j k k⋅ = ⋅ = ⋅ = 1

� � � � � �i j j k k i⋅ = ⋅ = ⋅ = 0

Given two vectors

A i j k= + +A A Ax y z
� � �

B i j k= + +B B Bx y z
� � �

their scalar product is

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ. .
x y z x y zA A A B B B= + + + +A B i j k i j k

 = + +A B A B A Bx x y y z z (6.1b)

From the definition of scalar product and
(Eq. 6.1b) we have :

( i ) x x y y z zA A A A A A= + +A A....

Or, A A A A
2

x

2

y

2

z

2= + + (6.1c)

since A.A = |A ||A| cos 0 = A2.
(ii) A.B = 0, if A and B are perpendicular.

Example 6.1  Find the angle between force

F = (3 +4 -5 )ˆ ˆ ˆi j k unit and displacement

d = (5 + 4 +3 )ˆ ˆ ˆi j k unit. Also find the

projection of F on d.

Answer F.d = x x y y z zF d F d F d+ +

= 3 (5) + 4 (4) + (– 5) (3)
= 16 unit

Hence F.d = cosF d θ  = 16 unit

Now F.F = 2 2 2 2  x y zF F F F= + +

= 9 + 16 + 25
= 50 unit

and d.d = d2 = 2 2 2  x y zd d d+ +

= 25 + 16 + 9
= 50 unit

∴ cos θ = 
16 16

= = 0.32
5050 50

,

θ = cos–1  0.32

Fig. 6.1 (a) The scalar product of two vectors A and B is a scalar : A.B = A B cos θ.  (b) B cos θ is the projection

of B onto A. (c) A cos θ is the projection of A onto B.
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to be proportional to the speed of the drop
but is otherwise undetermined.  Consider
a drop of mass 1.00 g falling from a height
1.00 km.  It hits the ground with a speed of
50.0 m s-1.  (a) What is the work done by the
gravitational force ? What is the work done
by the unknown resistive force?

Answer (a) The change in kinetic energy of the
drop is

21
0

2
K m v∆ = −

=
1

2
10 50 50-3× × ×

= 1.25 J

where we have assumed that the drop is initially
at rest.

Assuming that g is a constant with a value
10 m/s2, the work done by the gravitational force
is,

W
g 
= mgh

      = 10-3 ×10 ×103

      = 10.0 J

(b) From the work-energy theorem

g rK  W W∆ =  +

where W
r
  is the work done by the resistive force

on the raindrop.  Thus
W

r 
 = ∆K − Wg

     = 1.25 −10
      = − 8.75 J

is negative. t

6.3  WORK

As seen earlier, work is related to force and the
displacement over which it acts.  Consider a
constant force F acting on an object of mass m.
The object undergoes a displacement d in the
positive x-direction as shown in Fig. 6.2.

Fig. 6.2 An object undergoes a displacement d

under the influence of the force F.

6.2 NOTIONS OF WORK AND KINETIC
ENERGY: THE WORK-ENERGY THEOREM

The following relation for rectilinear motion under
constant acceleration a has been encountered
in Chapter 3,

      v2 − u2 = 2 as (6.2)

where u and v  are the initial and final speeds
and s the distance traversed.  Multiplying both
sides by m/2, we have

2 21 1

2 2
mv mu mas Fs− = = (6.2a)

where the last step follows from Newton’s Second
Law. We can generalise Eq. (6.2) to three
dimensions by employing vectors

v2 − u2 = 2 a.d

Here a and d are acceleration and displacement
vectors of the object respectively.
Once again multiplying both sides by m/2 , we obtain

2 21 1

2 2
mv mu m − = =a.d F.d (6.2b)

The above equation provides a motivation for
the definitions of work and kinetic energy. The
left side of the equation is the difference in the
quantity ‘half the mass times the square of the
speed’ from its initial value to its final value. We
call each of these quantities the ‘kinetic energy’,
denoted by K. The right side is a product of the
displacement and the component of the force
along the displacement.  This quantity is called
‘work’ and is denoted by W.  Eq. (6.2b) is then

K
f 
−  K

i 
= W (6.3)

where K
i
  and K

f
  are respectively the initial and

final kinetic energies of the object. Work refers
to the force and the displacement over which it
acts. Work is done by a force on the body over
a certain displacement.

Equation (6.2) is also a special case of the
work-energy (WE) theorem : The change in
kinetic energy of a particle is equal to the
work done on it by the net force. We shall
generalise the above derivation to a varying force
in a later section.

Example 6.2  It is well known that a
raindrop falls under the influence of the
downward gravitational force and the
opposing resistive force.  The latter is known
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Table 6.1   Alternative Units of Work/Energy in J

Example 6.3  A cyclist comes to a skidding
stop in 10 m.  During this process, the force
on the cycle due to the road is 200 N and
is directly opposed to the motion.  (a) How
much work does the road do on the cycle ?
(b) How much work does the cycle do on
the road ?

Answer  Work done on the cycle by the road is

the work done by the stopping (frictional) force

on the cycle due to the road.

(a) The stopping force and the displacement make

an angle of 180o  (π rad) with each other.

Thus, work done by the road,

W
r
 =  Fd cosθ

     =  200 × 10 × cos π

      = – 2000 J

It is this negative work that brings the cycle

to a halt in accordance with WE theorem.

(b) From Newton’s Third Law an equal and

opposite force acts on the road due to the

cycle. Its magnitude is 200 N. However, the

road undergoes no displacement.  Thus,

work done by cycle on the road is zero.            t

The lesson of Example 6.3 is that though the

force on a body A exerted by the body B is always

equal and opposite to that on B by A (Newton’s

Third Law); the work done on A by B is not

necessarily equal and opposite to the work done

on B by A.

6.4  KINETIC ENERGY

As noted earlier, if an object of mass m has

velocity v, its kinetic energy K  is

2K m mv
1 1

= =
2 2

v v.                        (6.5)

Kinetic energy is a scalar quantity. The kinetic

energy of an object is a measure of the work an

The work done by the force is defined to be

the product of component of the force in the

direction of the displacement and the

magnitude of this displacement.  Thus

W = (F cos θ )d = F.d (6.4)

We see that if there is no displacement, there

is no work done even if the force is large.  Thus,

when you push hard against a rigid brick wall,

the force you exert on the wall does no work.  Yet

your muscles are alternatively contracting and

relaxing and internal energy is being used up

and you do get tired.  Thus, the meaning of work

in physics is different from its usage in everyday

language.

No work is done if :

(i) the displacement is zero as seen in the

example above. A weightlifter holding a 150

kg mass steadily on his shoulder for 30 s

does no work on the load during this time.

(ii) the force is zero.  A block moving on a smooth

horizontal table is not acted upon by a

horizontal force (since there is no friction), but

may undergo a large displacement.

(iii) the force and displacement are mutually

perpendicular. This is so since, for θ = π/2 rad

(= 90o), cos (π/2) = 0.  For the block moving on

a smooth horizontal table, the gravitational

force mg  does no work since it acts at right

angles to the displacement. If we assume that

the moon’s orbits around the earth is

perfectly circular then the earth’s

gravitational force does no work.  The moon’s

instantaneous displacement is tangential

while the earth’s force is radially inwards and

θ  = π/2.

Work can be both positive and negative.  If θ  is

between 0o and 90o, cos θ  in Eq. (6.4) is positive.

If  θ  is  between 90o and 180o,   cos θ  is negative.

In many examples the frictional force opposes

displacement and θ  = 180o. Then the work done

by friction is negative (cos 180o = –1).

From Eq. (6.4) it is clear that  work and energy

have the same dimensions,  [ML2T–2]. The SI unit

of these is joule (J), named after the famous British

physicist James Prescott Joule  (1811-1869). Since

work and energy are so widely used as physical

concepts, alternative units abound and some of

these are listed in Table 6.1.
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object can do by the virtue of its motion. This

notion has been intuitively known for a long time.

The kinetic energy of a fast flowing stream

has been used to grind corn. Sailing

ships employ the kinetic energy of the wind. Table

6.2 lists the kinetic energies for various

objects.

Example 6.4  In a ballistics demonstration
a police officer fires a bullet of mass 50.0 g
with speed 200 m s-1 (see Table 6.2) on soft
plywood of thickness 2.00 cm.  The bullet
emerges with only 10% of its initial kinetic
energy.  What is the emergent speed of the
bullet ?

Answer  The initial kinetic energy of the bullet
is mv2/2 = 1000 J.  It has a final kinetic energy
of 0.1×1000 = 100 J.  If v

f
  is the emergent speed

of the bullet,

1

2
=mv f

2
100 J

kg 05.0

 J 1002×
=fv

                =  63.2 m s–1

The speed is reduced by approximately 68%
(not 90%).                                                                      t

6.5  WORK DONE BY A VARIABLE FORCE

A constant force is rare.  It is the variable force,
which is more commonly encountered.  Fig. 6.3
is a plot of a varying force in one dimension.

If the displacement ∆x is small, we can take
the force F (x)  as approximately constant and
the work done is then

∆W =F (x) ∆x

Table 6.2  Typical kinetic energies (K)

This is illustrated in Fig. 6.3(a).  Adding
successive rectangular areas in Fig. 6.3(a) we
get the total work done as

( )∑ ∆≅
f

i

x

x

xxFW (6.6)

where the summation is from the initial position
x

i
 
 
to the final position x

f
.

If the displacements are allowed to approach
zero, then the number of terms in the sum
increases without limit, but the sum approaches
a definite value equal to the area under the curve
in Fig. 6.3(b). Then the work done is

          = ( )∫ F x x
x

x

i

f

d (6.7)

where ‘lim’ stands for the limit of the sum when
∆x  tends to zero.  Thus, for a varying force
the work done can be expressed as a definite
integral of force over displacement (see also
Appendix 3.1).

limW =
lim

x∆ →
( )∑ ∆

f

i

x

x

xxF
0

Fig. 6.3(a)
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Fig. 6.3 (a) The shaded rectangle represents the

work done by the varying force F(x), over

the small displacement ∆x,  ∆W = F(x) ∆x.

(b) adding the areas of all the rectangles we

find that for ∆x → 0, the area under the curve

is exactly equal to the work done by F(x).

Example 6.5  A woman pushes a trunk on
a railway platform which has a rough
surface.  She applies a force of 100 N over a
distance of 10 m.  Thereafter, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N.  The
total distance through which the trunk has
been moved is 20 m.  Plot the force applied
by the woman and the frictional force, which
is 50 N versus displacement.  Calculate the
work done by the two forces over 20 m.

Answer

Fig. 6.4 Plot of the force F applied by the woman and

the opposing frictional force f versus

displacement.

The plot of the applied force is shown in Fig.
6.4.  At x  = 20 m, F  = 50 N (≠ 0).  We are given
that the frictional force f is |f|= 50 N. It opposes
motion and acts in a direction opposite to F.  It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W
F 

→ area of the rectangle ABCD + area of
the trapezium CEID

( )WF = × + + ×100 10
1

2
100 50 10

       = 1000 + 750
      = 1750 J

The work done by the frictional force is

W
f 
→ area of the rectangle AGHI
W

f
  = (−50) × 20

      = − 1000 J
The area on the negative side of the force axis
has a negative sign. t

6.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a variable force.  We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

d

d

d

d

K

t t
m v=







1

2
2

      
d

d

v
m v

t
=

      v F=  (from Newton’s Second Law)

      
d

d

x
F

t
=

Thus
             dK = Fdx

Integrating from the initial position  (x 
i
 ) to final

position ( x 
f
 ), we have

d dK F x
K

K

x

x

i

f

i

f

∫ ∫=

where,  K
i
  and K 

f
  are the initial and final kinetic

energies corresponding to x
 i 
 and

 
 x 

f
.

or K K F xf i

x

x

i

f

− = ∫ d  (6.8a)

From Eq. (6.7), it follows that

           K
f
 −  K

i  
= W (6.8b)

Thus, the WE theorem is proved for a variable

force.

While the WE theorem is useful in a variety of

problems, it does not, in general, incorporate the

complete dynamical information of Newton’s

second law. It is an integral form of Newton’s

second law. Newton’s second law is a relation

between acceleration and force at any instant of

time. Work-energy theorem involves an integral

over an interval of time. In this sense, the temporal

(time) information contained in the statement of

Newton’s second law is ‘integrated over’ and is
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not available explicitly. Another observation is that
Newton’s second law for two or three dimensions
is in vector form whereas the work-energy
theorem is in scalar form. In the scalar form,
information with respect to directions contained
in Newton’s second law is not present.

Example 6.6  A block of mass m  = 1 kg,
moving on a horizontal surface with speed
v

i
 = 2 m s–1 enters a rough patch ranging

from x = 0.10 m to x = 2.01 m. The retarding
force F

r
 on the block in this range is inversely

proportional  to x  over this range,

F
k

x
r =

−
 for 0.1 < x < 2.01 m

= 0 for x < 0.1m and x > 2.01 m
where k = 0.5 J.  What is the final kinetic
energy and speed v

f
  of the block as it

crosses this patch ?

Answer  From Eq. (6.8a)

K K
k

x
xf i

0.1

2.01

= +
−( )

∫ d

( ) 2.01
0.1

1
ln

2
2
imv k x= −

( )1
ln 2.01/0.1

2
2
imv k  = −

= 2 − 0.5 ln (20.1)

= 2 − 1.5  = 0.5 J

1sm  1/2 −== mKv ff

Here, note that ln is a symbol for the natural
logarithm to the base e and not the logarithm to
the base 10 [ln X = log

e
 X = 2.303 log

10
 X]. t

6.7  THE CONCEPT OF POTENTIAL ENERGY

The word potential suggests possibility or
capacity for action. The term potential energy
brings to one’s mind ‘stored’ energy. A stretched
bow-string possesses potential energy. When it
is released, the arrow flies off at a great speed.
The earth’s crust is not uniform, but has
discontinuities and dislocations that are called
fault lines. These fault lines in the earth’s crust

are like ‘compressed springs’. They possess a
large amount of potential energy. An earthquake
results when these fault lines readjust. Thus,
potential energy is the ‘stored energy’ by virtue
of the position or configuration of a body. The
body left to itself releases this stored energy in
the form of kinetic energy. Let us make our notion
of potential energy more concrete.

The gravitational force on a ball of mass m is
mg . g may be treated as a constant near the earth
surface. By ‘near’ we imply that the height h  of
the ball above the earth’s surface is very small
compared to the earth’s radius R

E 
(h <<R

E
) so that

we can ignore the variation of g near the earth’s

surface*. In what follows we have taken the

upward direction to be positive. Let us raise the
ball up to a height h. The work done by the external
agency against the gravitational force is mgh. This
work gets stored as potential energy.
Gravitational potential energy of an object, as a
function of the height h, is denoted by V(h) and it
is the negative of work done by the gravitational
force in raising the object to that height.

V (h) = mgh

If h is taken as a variable, it is easily seen that
the gravitational force F equals the negative of
the derivative of V(h) with respect to h. Thus,

d

d
F V(h) m g

h
= − = −

The negative sign indicates that the
gravitational force is downward. When released,
the ball comes down with an increasing speed.
Just before it hits the ground, its speed is given
by the kinematic relation,

v2 = 2gh

This equation can be written as

2

1
m v2 = m g h

which shows that the gravitational potential
energy of the object at height h, when the object
is released, manifests itself as kinetic energy of
the object on reaching the ground.

Physically, the notion of potential energy is
applicable only to the class of forces where work
done against the force gets ‘stored up’ as energy.
When external constraints are removed, it
manifests itself as kinetic energy. Mathematically,
(for simplicity, in one dimension) the potential

* The variation of g with height is discussed in Chapter 8 on Gravitation.
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energy V(x) is defined if the force F(x) can be
written as

( ) d

d

V
F x

x
= −

This implies that

F(x) x V V V
x

x

i f

V

V

i

f

i

f

d d∫ ∫= − = −

The work done by a conservative force such as

gravity depends on the initial and final positions

only. In the previous chapter we have worked

on examples dealing with inclined planes. If an

object of mass m is released from rest, from the

top of a smooth (frictionless) inclined plane of

height h, its speed at the bottom

is gh2 irrespective of the angle of inclination.

Thus, at the bottom of the inclined plane it

acquires a kinetic energy, mgh. If the work done

or the kinetic energy did depend on other factors

such as the velocity or the particular path taken

by the object, the force would be called non-

conservative.
The  dimensions  of  potential  energy are

[ML2T –2] and the unit is joule (J), the same as
kinetic energy or work. To reiterate, the change
in potential energy, for a conservative force,
∆V  is equal to the negative of the work done by
the force

∆V = − F(x) ∆x (6.9)

In the example of the falling ball considered in

this section we saw how potential energy was

converted to kinetic energy. This hints at an

important principle of conservation in mechanics,

which we now proceed to examine.

6.8 THE CONSERVATION OF MECHANICAL
ENERGY

For simplicity we demonstrate this important

principle for one-dimensional motion. Suppose

that a body undergoes displacement ∆x under

the action of a conservative force F. Then from

the WE theorem we have,

∆K =  F(x) ∆x

If the force is conservative, the potential energy
function V(x) can be defined such that

− ∆V  =  F(x) ∆x

The above equations imply that
∆K + ∆V = 0
∆(K + V ) = 0 (6.10)

which means that K + V, the sum of the kinetic

and potential energies of the body is a constant.

Over the whole path, x
i 
to x

f
, this means that

K
i
 + V(x

i
) = K

f
  + V(x

f
) (6.11)

The quantity K +V(x), is called the total

mechanical energy of the system.  Individually

the kinetic energy K  and the potential energy

V(x) may vary from point to point,  but the sum

is a constant. The aptness of the term

‘conservative force’ is now clear.

Let us consider some of  the definitions of a

conservative force.

l A force F(x) is conservative if it can be derived

from a scalar quantity V(x) by the relation
given by Eq. (6.9). The three-dimensional
generalisation requires the use of a vector
derivative, which is outside the scope of this
book.

l The work done by the conservative force
depends only on the end points. This can be
seen from the relation,

W = K
f
 – K

i
 = V (x

i
) – V(x

f
)

which depends on the end points.
l A third definition states that the work done

by this force in a closed path is zero.  This is
once  again apparent from Eq. (6.11) since
x

i
  = x

f .

Thus, the principle of conservation of total
mechanical energy can be stated as

The total mechanical energy of a system is
conserved if the forces, doing work on it, are
conservative.

The above discussion can be made more
concrete by considering the example of the
gravitational force once again and that of the
spring force in the next section. Fig. 6.5 depicts
a ball of mass m being dropped from a cliff of
height H.

Fig. 6.5 The conversion of potential energy to kinetic

energy for a ball of mass m dropped from a

height H.
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t

The total mechanical energies E
0
, E

h
, and E

H

of the ball at the indicated heights zero (ground
level), h and H, are

E
H
   = mgH                           (6.11 a)

1

2

2
h hE mgh mv= + (6.11 b)

E
0     

= (1/2) mv
f
2 (6.11 c)

The constant force is a special case of a spatially
dependent force F(x). Hence, the mechanical
energy is conserved.  Thus

E
H
 = E

0

or,
1

2

2
fmgH mv=

2fv gH=

a result that was obtained in section 3.7 for a
freely falling body.
Further,

E
H
 = E

h

which implies,

v g(H h)h
2 2= −               (6.11 d)

and is a familiar result from kinematics.
At the height H, the energy is purely potential.

It is partially converted to kinetic at height h  and
is fully kinetic at ground level. This illustrates
the conservation of mechanical energy.

Example 6.7  A bob of mass m is suspended
by a light string of length L .  It is imparted a
horizontal velocity v

o
 at the lowest point A

such that it completes a semi-circular
trajectory in the vertical plane with the string
becoming slack only on reaching the topmost
point, C.  This is shown in Fig. 6.6. Obtain an
expression for (i) v

o
; (ii)  the speeds at points

B and C; (iii) the ratio  of  the kinetic energies
(K

B
/K

C
) at B and C. Comment on the nature

of the trajectory of the bob after it reaches
the point C.

Fig. 6.6

Answer  (i)  There are two external forces on

the bob : gravity and the tension (T ) in the

string. The latter does no work since the

displacement of the bob is always normal to the

string. The potential energy of the bob is thus

associated with the gravitational force only. The

total mechanical energy E  of the system is

conserved.  We take the potential energy of the

system to be zero at the lowest point A. Thus,

at A :

E mv0

2=
1

2
(6.12)

       [Newton’s Second Law]

where T
A
 is the tension  in the string at A. At the

highest point C, the string slackens, as the
tension in the string (T

C
) becomes zero.

Thus, at C

2mgLmvE c += 2

2

1
(6.13)

L

mv
mg

2

c=     [Newton’s Second Law] (6.14)

where v
C
 is the speed at C. From Eqs. (6.13) and

(6.14)

5
E mgL

2
=

Equating this to the energy at A

5

2 2
2
0

m
mgL v=

or, 50v gL=

(ii) It is clear from Eq. (6.14)

gLvC =

At B, the energy is

1

2
2
BE mv mgL= +

Equating this to the energy at A and employing

the result from (i), namely gLv2

0 5= ,

1 1

2 2
2 2
B 0mv mgL mv+ =

5

2
m g L=
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gLvB 3=∴

(iii) The ratio of the kinetic energies at B and C
  is :

 
1

3
  

2

1
2

1

  ==
2
C

2
B

C

B

mv

mv

K

K

At point C, the string becomes slack and the
velocity of the bob is horizontal and to the left.  If
the connecting string is cut at this instant, the
bob will execute a projectile motion with
horizontal projection akin to a rock kicked
horizontally from the edge of a cliff.  Otherwise
the bob will continue on its circular path and
complete the revolution.             t

6.9  THE POTENTIAL ENERGY OF A SPRING

The spring force is an example of a variable force
which is conservative. Fig. 6.7 shows a block
attached to a spring and resting on a smooth
horizontal surface.  The other end of the spring
is attached to a rigid wall. The spring is light
and may be treated as massless.  In an ideal
spring, the spring force F

s
  is proportional to

x where x  is the displacement of the block from
the equilibrium position. The displacement could
be either positive [Fig. 6.7(b)] or negative
[Fig. 6.7(c)].  This force law for the spring is called
Hooke’s law and is mathematically stated as

F
s
 =  − kx

The constant k is called the spring constant.  Its
unit is N m-1.  The spring is said to be stiff if k is
large and soft if k is small.

Suppose that we pull the block outwards as in
Fig. 6.7(b). If the extension is x

m
, the work done by

the spring force is

W F  xs s

0

xm

= ∫ d     = − ∫ kx x
0

xm

d

2

2
mx k

−=          (6.15)

This expression may also be obtained by
considering the area of the triangle as in
Fig. 6.7(d).  Note that the work done by the
external pulling force F is positive since it
overcomes the spring force.

2

2
mx k

W += (6.16)

Fig. 6.7 Illustration of the spring force with a block

attached to the free end of the spring.

(a) The spring force F
s
 is zero when the

displacement x  from the equilibrium position

is zero. (b) For the stretched spring x > 0

and F
s  

< 0 (c) For the compressed spring

x < 0 and  F
s
 > 0.(d) The plot of F

s
  versus x.

The area of the shaded triangle represents

the work done by the spring force. Due to the

opposing signs of Fs and x, this work done is

negative, W kx /s m

2= − 2 .

The same is true when the spring is
compressed with a displacement x

c
 (< 0).  The

spring force does work 2/ 2
cs kxW −=  while the
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Fig. 6.8 Parabolic plots of the potential energy V and

kinetic energy K of a block attached to a

spring obeying Hooke’s law. The two plots

are complementary, one decreasing as the

other increases. The total mechanical

energy E = K + V remains constant.

t

external force F does work +  kxc

2
/ 2 . If the block

is moved from an initial displacement x
i
  to a

final displacement x
f
 , the work done by the

spring force W
s
 is

  W k x x 
k x k x

s

x

x

i f

i

f

= − = −∫ d     
2 2

2 2            
(6.17)

Thus the work done by the spring force depends
only on the end points.  Specifically, if the block
is pulled from x

i
  and allowed to return to x

i
 ;

      W k x x       
k x k x

 s
i i

x

x

i

i

= − = −∫ d     
2 2

2 2

       = 0 (6.18)
The work done by the spring force in a cyclic
process is zero.  We have explicitly demonstrated
that the spring force (i) is position dependent
only as first stated by Hooke, (F

s
 = − kx); (ii)

does work which only depends on the initial and
final positions, e.g. Eq. (6.17).  Thus, the spring
force is a conservative force.

We define the potential energy V(x) of the spring
to be zero when block and spring system is in the
equilibrium position.  For an extension (or
compression) x  the above analysis suggests that

V(x)
kx 2

=
2

(6.19)

You may easily verify that − dV/dx = − k x, the
spring force.  If the block of mass m in Fig. 6.7 is
extended to x

m
 and released from rest, then its

total mechanical energy at any arbitrary point x,
where x lies between – x

m 
 and + x

m,
 will be given by

222
m v mx kx k

2

1

2

1

2

1
+=

where we have invoked the conservation of
mechanical energy.  This suggests that the speed
and the kinetic energy will be maximum at the
equilibrium position, x = 0, i.e.,

2
m

2
m x k  v m

2

1

2

1
=

where v
m
 is the maximum speed.

or mm x 
m

k
v =

Note that k/m has the dimensions of [T-2] and
our equation is dimensionally correct. The
kinetic energy gets converted to potential energy

and vice versa, however, the total mechanical
energy remains constant. This is graphically
depicted in Fig. 6.8.

Example 6.8  To simulate car accidents, auto
manufacturers study the collisions of moving
cars with mounted springs of different spring
constants.  Consider a typical simulation with
a car of mass 1000 kg moving with a speed
18.0 km/h on a smooth road and colliding
with a horizontally mounted spring of spring
constant 6.25 × 103 N m–1. What is the
maximum compression of the spring ?

Answer   At maximum compression the kinetic
energy of the car is converted entirely into the
potential energy of the spring.

The kinetic energy of the moving car is

K mv2=
1

2

    
5510

2

1 3 ×××=

            K  = 1.25 × 104 J

where we have converted 18 km h–1 to 5 m s–1  [It is
useful to remember that 36 km h–1 = 10 m s–1].
At maximum compression x

m
, the potential

energy V of the spring is equal to the kinetic
energy K of the moving car from the principle of
conservation of mechanical energy.

2
mx k  V

2

1
=
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t

                = 1.25 × 104 J
We obtain

x
m
 = 2.00 m

We note that we have idealised the situation.
The spring is considered to be massless. The
surface has been considered to possess
negligible friction. t

We conclude this section by making a few
remarks on conservative forces.

(i) Information on time is absent from the above

discussions. In the example considered

above, we can calculate the compression, but

not the time over which the compression

occurs.  A solution of Newton’s Second Law

for this system is required for temporal

information.

(ii) Not all forces are conservative. Friction, for

example, is a non-conservative force. The

principle of conservation of energy will have

to be modified in this case. This is illustrated

in Example 6.9.

(iii) The zero of the potential energy is arbitrary.

It is set according to convenience.  For the

spring force we took V(x) = 0, at x = 0, i.e. the

unstretched spring had zero potential

energy.  For the constant gravitational force

mg, we took V = 0  on the earth’s surface.  In

a later chapter we shall see that for the force

due to the universal law of gravitation, the

zero is best defined at an infinite distance

from the gravitational source. However, once

the zero of the potential energy is fixed in a

given discussion, it must be consistently

adhered to throughout the discussion. You

cannot change horses in midstream !

Example 6.9   Consider Example 6.8 taking
the coefficient of friction, µ, to be 0.5 and
calculate the  maximum compression of the
spring.

Answer  In presence of friction, both the spring

force and the frictional force act so as to oppose

the compression of the spring as shown in

Fig. 6.9.

We invoke the work-energy theorem, rather

than the conservation of mechanical energy.

The change in kinetic energy is

Fig. 6.9  The forces acting on the car.

∆K  = K
f
 − K

i 

2v m   
2

1
0 −=

The work done by the net force is

1

2
2
m mW   kx   m g x= − − µ

Equating we have

1 1

2 2
2 2

m mm v   k x  m g x= + µ

Now  µmg  = 0.5 × 103 × 10 = 5 × 103 N (taking
g =10.0 m s-2). After rearranging the above
equation we obtain the following quadratic
equation in the unknown x

m
.

22 2
m mk x m g x m v 0+ − =µ

where we take the positive square root since
x

m
 is positive. Putting in numerical values we

obtain

x
m
  = 1.35 m

which, as expected, is less than the result in
Example 6.8.

If the two forces on the body consist of a
conservative force F

c
 and a non-conservative

force  F
nc
 , the conservation of mechanical energy

formula will have to be modified. By the WE
theorem

(F
c
+ F

nc
) ∆x = ∆K

But     F
c
 ∆x = − ∆V

Hence,             ∆(K + V) = F
nc 

∆x

                       ∆E    = F
nc 

∆x

where E  is the total mechanical energy. Over
the path this assumes the form

E
f
 −−−−− E

i
  = W

nc

where W
nc

  is the total work done by the
non-conservative forces over the path. Note that
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unlike the conservative force, W
nc  

depends on
the particular path i  to  f. t

6.10 VARIOUS FORMS OF ENERGY : THE LAW
OF CONSERVATION OF ENERGY

In the previous section we have discussed
mechanical energy.  We have seen that it can be
classified into two distinct categories : one based
on motion, namely kinetic energy; the other on
configuration (position), namely potential energy.
Energy comes in many a forms which transform
into one another in ways which may not often
be clear to us.

6.10.1  Heat

We have seen that the frictional force is not a
conservative force. However, work is associated
with the force of friction, Example 6.5. A block of
mass m sliding on a rough horizontal surface
with speed v

0
 comes to a halt over a distance x

0
.

The work done by the force of kinetic friction f
over x

0 
is –f x

0
.
 
By the work-energy theorem

2
o 0m v /2  f  x .=  If we confine our scope to

mechanics, we would say that the kinetic energy
of the block is ‘lost’ due to the frictional force.
On examination of the block and the table we
would detect a slight increase in their
temperatures. The work done by friction is not
‘lost’, but is transferred as heat energy. This
raises the internal energy of the block and the
table. In winter, in order to feel warm, we
generate heat by vigorously rubbing our palms
together. We shall see later that the internal
energy is associated with the ceaseless, often
random, motion of molecules. A quantitative idea
of the transfer of heat energy is obtained by
noting that 1 kg of water releases about 42000 J
of energy when it cools by10 °C.

6.10.2   Chemical Energy

One of the greatest technical achievements of
humankind occurred when we discovered how
to ignite and control fire. We learnt to rub two
flint stones together (mechanical energy), got
them to heat up and to ignite a heap of dry leaves
(chemical energy), which then provided
sustained warmth.  A matchstick ignites into a
bright flame when struck against a specially
prepared chemical surface. The lighted
matchstick, when applied to a firecracker,
results in a spectacular display of sound and
light.

Chemical energy arises from the fact that the
molecules participating in the chemical reaction
have different binding energies. A stable chemical
compound has less energy than the separated parts.
A chemical reaction is basically a rearrangement
of atoms. If the total energy of the reactants is more
than the products of the reaction, heat is released
and the reaction is said to be an exothermic
reaction. If the reverse is true, heat is absorbed and
the reaction is endothermic. Coal consists of
carbon and a kilogram of it when burnt releases
about 3 × 107 J of energy.

Chemical energy is associated with the forces
that give rise to the stability of substances. These

forces bind atoms into molecules, molecules into

polymeric chains, etc. The chemical energy

arising from the combustion of coal, cooking gas,

wood and petroleum is indispensable to our daily

existence.

6.10.3  Electrical Energy

The flow of electrical current causes bulbs to

glow, fans to rotate and bells to ring.  There are

laws governing the attraction and repulsion of

charges and currents, which we shall learn

later. Energy is associated with an electric

current. An urban Indian  household consumes

about 200 J of energy per second on an average.

6.10.4  The Equivalence of Mass and Energy

Till the end of the nineteenth century, physicists

believed that in every physical and chemical

process, the mass of an isolated system is

conserved. Matter might change its phase, e.g.

glacial ice could melt into a gushing stream, but

matter is neither created nor destroyed; Albert

Einstein (1879-1955) however, showed that mass

and energy are equivalent and are related by

the relation

E = m c2 (6.20)
where c, the speed of light in vacuum is
approximately 3 ×108 m s–1.  Thus, a staggering
amount of energy is associated with a mere
kilogram of matter

E = 1× (3 ×108)2 J = 9 ×1016 J.

This is equivalent to the annual electrical output
of a large (3000 MW) power generating station.

6.10.5  Nuclear Energy

The most destructive weapons made by man, the
fission and fusion bombs are manifestations of
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the above equivalence of mass and energy [Eq.

(6.20)]. On the other hand the explanation of the

life-nourishing energy output of the sun is also

based on the above equation.  In this case

effectively four light hydrogen nuclei fuse to form

a helium nucleus whose mass is less than the

sum of the masses of the reactants. This mass

difference, called the mass defect ∆m  is the

source of energy (∆m)c2.  In fission, a heavy

nucleus like uranium U235
92 

, is split by a neutron

into lighter nuclei.  Once again the final mass is

less than the initial mass and the mass difference

translates into energy, which can be tapped to

provide electrical energy as in nuclear power

plants (controlled nuclear fission) or can be

employed in making nuclear weapons

(uncontrolled nuclear fission). Strictly, the energy

∆E released in a chemical reaction can also be

related to the mass defect ∆m = ∆E/c2. However,

for a chemical reaction, this mass defect is much

smaller than for a nuclear reaction. Table 6.3

lists the total energies for a variety of events and

phenomena.

Table 6.3   Approximate energy associated with various phenomena

Example 6.10  Examine Tables 6.1-6.3
and express (a) The energy required to
break one bond in DNA in eV; (b) The
kinetic energy of an air molecule (10—21 J)
in eV; (c) The daily intake of a human adult
in kilocalories.

Answer  (a) Energy required to break one bond
of DNA is

 

20

19

10 J ~ 0.06 eV
1.6 10 J/eV

−

−×

Note 0.1 eV = 100 meV (100 millielectron volt).

(b) The kinetic energy of an air molecule is

 

21

19

10 J
~ 0.0062 eV

1.6 10 J/eV

−

−×

This is the same as 6.2 meV.

(c) The average human consumption in a day is

7

 
3

10 J
~ 2400 kcal

4.2×10 J/kcal

t

2018-19



PHYSICS128

We point out a common misconception created

by newspapers and magazines. They mention

food values in calories and urge us to restrict

diet intake to below 2400 calories. What they

should be saying is kilocalories (kcal) and not

calories. A person consuming 2400 calories a

day will soon starve to death! 1 food calorie is

1 kcal. t

6.10.6 The Principle of Conservation of
Energy

We have seen that the total mechanical energy

of the system is conserved if the forces doing work

on it are conservative. If some of the forces

involved are non-conservative, part of the

mechanical energy may get transformed into

other forms such as heat, light and sound.

However, the total energy of an isolated system

does not change, as long as one accounts for all

forms of energy.  Energy may be transformed from

one form to another but the total energy of an

isolated system remains constant. Energy can

neither be created, nor destroyed.

Since the universe as a whole may be viewed

as an isolated system, the total energy of the

universe is constant. If one part of the universe

loses energy, another part must gain an equal

amount of energy.

The principle of conservation of energy cannot

be proved. However, no violation of this principle

has been observed.  The concept of conservation

and transformation of energy into various forms

links together various branches of physics,

chemistry and life sciences. It provides a

unifying, enduring element in our scientific

pursuits. From engineering point of view all

electronic, communication and mechanical

devices rely on some forms of energy

transformation.

6.11  POWER

Often it is interesting to know not only the work
done on an object, but also the rate at which
this work is done. We say a person is physically
fit if he not only climbs four floors of a building
but climbs them fast. Power is defined as the
time rate at which work is done or energy is
transferred.

The average power of a force is defined as the
ratio of the work, W, to the total time t taken

P
W

t
av =

The instantaneous power is defined as the
limiting value of the average power as time
interval approaches zero,

d

d

W
P

t
= (6.21)

The work dW done by a force F for a displacement
dr is dW = F.dr.  The instantaneous power can
also be expressed as

d

d
P

t
= F.

r

= F.v (6.22)

where v is the instantaneous velocity when the
force is F.

Power, like work and energy, is a scalar
quantity.  Its dimensions are [ML2T–3]. In the SI,
its unit is called a watt (W).  The watt is 1 J s–1.
The unit of power is named after James Watt,
one of the innovators of the steam engine in the
eighteenth century.

There is another unit of power, namely the
horse-power (hp)

1 hp = 746 W
This unit is still used to describe the output of
automobiles, motorbikes, etc.

We encounter the unit watt when we buy
electrical goods such as bulbs, heaters and
refrigerators.  A 100 watt bulb which is on for 10
hours uses 1 kilowatt hour (kWh) of energy.

100 (watt) × 10 (hour)
= 1000 watt hour
=1 kilowatt hour (kWh)
= 103 (W) × 3600 (s)
= 3.6 × 106 J

Our electricity bills carry the energy
consumption in units of kWh.  Note that kWh is
a unit of energy and not of power.

Example 6.11  An elevator can carry a
maximum load of 1800 kg (elevator +
passengers) is moving up with a constant
speed of 2 m s–1. The frictional force opposing
the motion is 4000 N. Determine the
minimum power delivered by the motor to
the elevator in watts as well as in horse
power.

u
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Answer  The downward force on the elevator is

F = m g + F
f
 = (1800 × 10) + 4000 = 22000 N

The motor must supply enough power to balance
this force.  Hence,

P = F. v = 22000 × 2 = 44000 W = 59 hp         t

6.12  COLLISIONS

In physics we study motion (change in position).
At the same time, we try to discover physical
quantities, which do not change in a physical
process. The laws of momentum and energy
conservation are typical examples. In this
section we shall apply these laws to a commonly
encountered phenomena, namely collisions.
Several games such as billiards, marbles or
carrom involve collisions.We shall study the
collision of two masses in an idealised form.

Consider two masses m
1
 and m

2
.  The particle

m
1
 is moving with speed v

1i 
, the subscript ‘i’

implying initial. We can cosider m
2
  to be at rest.

No loss of generality is involved in making such
a selection. In this situation the  mass m

1

collides  with  the stationary  mass m
2
  and  this

is depicted in  Fig. 6.10.

Fig. 6.10 Collision of mass m
1
, with a stationary mass m

2
.

The masses m
1
 and m

2
 fly-off in different

directions.  We shall see that there are
relationships, which connect the masses, the
velocities and the angles.

6.12.1  Elastic and  Inelastic Collisions

In all collisions the total linear momentum is
conserved; the initial momentum of the system
is equal to the final momentum of the system.
One can argue this as follows.  When two objects
collide, the mutual impulsive forces acting over
the collision time ∆t cause a change in their
respective momenta :

∆p
1 
= F

12  
∆t

∆p
2 
= F

21  
∆t

where F
12

 is  the force exerted on the first particle

by the second particle. F
21 

is likewise the force
exerted on the second particle by the first particle.
Now from Newton’s third law, F

12
 = − F

21
.  This

implies

∆p
1 
+ ∆p

2 
=  0

The above conclusion is true even though the
forces vary in a complex fashion during the
collision time ∆t. Since the third law is true at
every instant, the total impulse on the first object
is equal and opposite to that on the second.

On the other hand, the total kinetic energy of
the system is not necessarily conserved. The
impact and deformation during collision may
generate heat and sound. Part of the initial kinetic
energy is transformed into other forms of energy.
A useful way to visualise the deformation during
collision is in terms of a ‘compressed spring’. If
the ‘spring’ connecting the two masses regains
its original shape without loss in energy, then
the initial kinetic energy is equal to the final
kinetic energy but the kinetic energy during the
collision time ∆t is not constant. Such a collision
is called an elastic collision. On the other hand
the deformation may not be relieved and the two
bodies could move together after the collision. A
collision in which the two particles move together
after the collision is called a completely inelastic
collision. The intermediate case where the
deformation is partly relieved and some of the
initial kinetic energy is lost is more common and
is appropriately called an inelastic collision.

6.12.2  Collisions in One Dimension

Consider first a completely inelastic collision
in one dimension. Then,  in Fig. 6.10,

 θ 
1
 = θ 

2
 = 0

 m
1
v

1i
 = (m

1
+m

2
)v

f  
  (momentum conservation)

 
1

1

1 2

f i

m
v v

m m
=

+                             (6.23)

The loss in kinetic energy on collision is

2 2
1 1 2

1 1

2 2
1i fK m v m m v∆ = − +( )

    

2
2 21

1 1 1

1 2

1 1

2 2
i i

m
m v v

 m m
= −

+
    [using Eq. (6.23)]

= −
+











1

2
11 1

2 1

1 2

m v
m

m m
i
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t

21 2
1

1 2

1

2
i

m m
v

m m
=

+

which is a positive quantity as expected.

Consider next an elastic collision.  Using the
above nomenclature with θ

1
 = θ

2
 = 0, the

momentum and kinetic energy conservation
equations are

m
1
v

1i
 = m

1
v

1f
 + m

2
v

2f
(6.24)

2 2 2
1 1 1 1 2 2i f fm v m v m v= + (6.25)

From  Eqs. (6.24)  and (6.25) it follows that,

1 1 2 1 1 1 2 1( ) ( )i f i f f fm v v v m v v v− = −

or, 2 2
2 1 1 1 1( )f i f i fv v v v v− = −

1 1 1 1( )( )i f i fv v v v= − +

Hence,  2 1 1f i fv v v∴ = + (6.26)

Substituting this in Eq. (6.24), we obtain

1 2
1 1

1 2

( )
f i

m m
v v

m m

−
=

+ (6.27)

and
1 1

2

1 2

2 i
f

m v
v

m m
=

+ (6.28)

Thus, the ‘unknowns’ {v
1f
, v

2f
} are obtained in

terms of the ‘knowns’ {m
1
, m

2
, v

1i
}. Special cases

of our analysis are interesting.

Case I : If the two masses are equal

v
1f
 = 0

v
2f
 =  v

1i

The first mass comes to rest and pushes off the
second mass with its initial speed on collision.

Case II : If one mass dominates, e.g. m
2
 > > m

1

v
1f
  ~ − v

1i
      v

2f
 ~ 0

The heavier mass is undisturbed while the
lighter mass reverses its velocity.

Example 6.12  Slowing down of neutrons:
In a nuclear reactor a neutron of high
speed (typically 107 m s–1) must be slowed

An experiment on head-on collision

In performing an experiment on collision on a horizontal surface, we face three difficulties.
One, there will be friction and bodies will not travel with uniform velocities. Two, if two bodies
of different sizes collide on a table, it would be difficult to arrange them for a head-on collision
unless their centres of mass are at the same height above the surface. Three, it will be fairly
difficult to measure velocities of the two bodies just before and just after collision.

By performing this experiment in a vertical direction, all the three difficulties vanish. Take
two balls, one of which is heavier (basketball/football/volleyball) and the other lighter (tennis
ball/rubber ball/table tennis ball). First take only the heavier ball and drop it vertically from
some height, say 1 m. Note to which it rises. This gives the velocities near the floor or ground,

just before and just after the bounce (by using 2 2v gh= ). Hence you

will get the coefficient of restitution.
Now take the big ball and a small ball and hold them in your

hands one over the other, with the heavier ball below the lighter
one, as shown here. Drop them together, taking care that they remain
together while falling, and see what happens. You will find that the
heavier ball rises less than when it was dropped alone, while the
lighter one shoots up to about 3 m. With practice, you will be able to
hold the ball properly so that the lighter ball rises vertically up and
does not fly sideways. This is head-on collision.

You can try to find the best combination of balls which gives you
the best effect. You can measure the masses on a standard balance.
We leave it to you to think how you can determine the initial and
final velocities of the balls.

2018-19



WORK, ENERGY AND POWER 131

t

to 103 m s–1 so that it can have a high

probability of interacting with isotope 
92

235U

and causing it to fission. Show that a
neutron can lose most of its kinetic energy
in an elastic collision with a light nuclei
like deuterium or carbon which has a mass
of only a few times the neutron mass.  The
material making up the light nuclei, usually
heavy water (D

2
O) or graphite, is called a

moderator.

Answer  The initial kinetic energy of the neutron
is

2
1 1 1

1

2
i iK m v=

while its final kinetic energy from Eq. (6.27)

K m v m
m m

m m
vf f i1 1 1

2
1

1 2

1 2

2

1
21

2

1

2
= =

−

+







    

The fractional kinetic energy lost is

f
K

K

m m

m m

f

i

1

1

1

1 2

1 2

2

= =
−

+








while the fractional kinetic energy gained by the
moderating nuclei K

2f 
/K

1i 
 is

f
2
 = 1 − f

1 
(elastic collision)

( )
1 2

2

1 2

4m m

m m
=

+

One can also verify this result by substituting
from Eq. (6.28).

For deuterium m
2
 = 2m

1 
and we obtain

f
1
 = 1/9  while f

2
 = 8/9.  Almost 90% of the

neutron’s energy is transferred to deuterium. For
carbon f

1
 = 71.6% and f

2
 = 28.4%.  In practice,

however, this number is smaller since head-on
collisions are rare. t

If the initial velocities and final velocities of
both the bodies are along the same straight line,
then it is called a one-dimensional collision, or
head-on collision. In the case of small spherical
bodies, this is possible if the direction of travel
of body 1 passes through the centre of body 2
which is at rest. In general, the collision is two-
dimensional, where the initial velocities and the
final velocities lie in a plane.

6.12.3  Collisions in Two Dimensions

Fig. 6.10 also depicts the collision of a moving

mass m
1
 with the stationary mass m

2
. Linear

momentum is conserved in such a collision.

Since momentum is a vector this implies three

equations for the three directions {x, y, z}.

Consider the plane determined by the final

velocity directions of m
1 
and m

2 
and choose it to

be the x-y plane. The conservation of the

z-component of the linear momentum implies

that the entire collision is in the x-y plane. The

x- and y-component equations are

m
1
v

1i
 = m

1
v

1f
 cos θ 

1
 + m

2
v

2f
 cos θ 

2
     (6.29)

0  = m
1
v

1f
  sin θ

1
 −  m

2
v

2f
 sin θ

2
        (6.30)

One knows {m
1
, m

2
, v

1i
} in most situations.  There

are thus four unknowns {v
1f

, v
2f

, θ
1 
and θ

2
}, and

only two equations. If θ 
1 

=
 
θ 

2 
= 0, we regain

Eq. (6.24) for one dimensional collision.

If, further the collision is elastic,

2 2 2
1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v= + (6.31)

We obtain an additional equation. That still
leaves us one equation short.  At least one of
the four unknowns, say θ 

1
, must be made known

for the problem to be solvable. For example, θ
1

can be determined by moving a detector in an
angular fashion from the x  to the y  axis. Given
{m

1
, m

2
, v

1i
, θ

1
} we can determine {v

1f
, v

2f
, θ

2
}

from Eqs. (6.29)-(6.31).

Example 6.13  Consider the collision
depicted in Fig. 6.10 to be between two
billiard balls with equal masses m

1
 = m

2
.

The first  ball  is  called the cue while the
second ball is called the target. The
billiard player wants to ‘sink’ the target
ball in a corner pocket, which is at an
angle θ

2
 = 37°. Assume that the collision

is elastic and that friction and rotational
motion are not important.  Obtain θ 

1
.

Answer   From momentum conservation, since
the masses are equal

2f1f1i vvv +=

or ( ) ( )2

1 2 1 21iv = + ⋅ +v v v vf f f f

          
2 2

1 2 1 22 .f f f fv v= + + v v
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( ){ }2 2
1 2 1 2 1 2 cos  37  f f f fv v v v θ= + + + ° (6.32)

Since the collision is elastic and m
1
 = m

2
 it follows

from conservation of kinetic energy that

2 2 2
1 1 2  i f fv v v= + (6.33)

Comparing Eqs. (6.32) and (6.33), we get

cos (θ
1
 + 37°) = 0

or θ
1
 + 37° = 90°

Thus,    θ
1
 = 53°

This proves the following result :  when two equal
masses undergo a glancing elastic collision with
one of them at rest, after the collision, they will
move at right angles to each other.                t

The matter simplifies greatly if we consider

spherical masses with smooth surfaces, and

assume that collision takes place only when the

bodies touch each other. This is what happens

in the games of marbles, carrom and billiards.

In our everyday world, collisions take place only

when two bodies touch each other. But consider

a comet coming from far distances to the sun, or

alpha particle coming towards a nucleus and

going away in some direction. Here we have to

deal with forces involving action at a distance.

Such an event is called scattering. The velocities

and directions in which the two particles go away

depend on their initial velocities as well as the

type of interaction between them, their masses,

shapes and sizes.

SUMMARY

1. The work-energy theorem states  that  the change in kinetic energy of a body is the work
done by the net force on the body.

K
f
 - K

i
 = W

net

2. A  force is conservative if (i) work done by it on an object is path  independent and
depends only on the end points {x

i
, x

j
}, or (ii) the work done by the force is zero for an

arbitrary closed path taken by the object such that it returns to its initial position.
3. For a conservative force in one dimension, we may define a potential energy function V(x)

such that

F x
V x

x
( ) = −

( )d

d

or V V = F x  xi f

x

x

i

f

− ( )∫ d

4. The principle of conservation of mechanical energy states that the total mechanical
energy of a body remains constant if the only forces that act on the body are conservative.

5. The gravitational potential energy of a particle of mass m at a height x  about the earth’s
surface is

V(x) = m g x

where the variation of g with height is ignored.

6. The elastic potential energy of a spring of force constant k  and extension x is

V x    k x( ) =
1

2

2

7. The scalar or dot product of two vectors A and B is written as A.B  and is a scalar
quantity given by : A.B = AB cos θ,  where θ  is the angle between A and B.  It can be
positive, negative or zero depending upon the value of θ. The scalar product of two
vectors can be interpreted as the product of magnitude of one vector and component
of the other vector along the first vector. For unit vectors :

ˆ ˆ ˆ ˆ ˆ ˆi i j j k k⋅ = ⋅ = ⋅ = 1  and ˆ ˆ ˆ ˆ ˆ ˆi j j k k i⋅ = ⋅ = ⋅ = 0

Scalar products obey the commutative and  the distributive laws.
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POINTS TO PONDER

1. The phrase ‘calculate the work done’ is incomplete. We should refer (or imply
clearly by context) to the work done by a specific force or a group of forces on a
given  body over a certain displacement.

2. Work done is a scalar quantity. It can be positive or negative unlike mass and
kinetic energy which are positive scalar quantities. The work done by the friction
or viscous force on a moving body is negative.

3. For two bodies, the sum of the mutual forces exerted between them is zero from
Newton’s Third Law,

F
12  

+  F
21 

 =  0

But the sum of the work done by the two forces need not always cancel, i.e.

W
12  

+ W
21  

≠  0

However, it may sometimes be true.

4. The work done by a force can be calculated sometimes even if the exact nature of
the force is not known. This is clear from Example 6.2 where the WE theorem is
used in such a situation.

5. The WE theorem is not independent of Newton’s Second Law. The WE theorem
may be viewed as a scalar form of the Second Law. The principle of conservation
of mechanical energy may be viewed as a consequence of the  WE theorem for
conservative forces.

6. The WE theorem holds in all inertial frames. It can also be extended to non-
inertial frames provided we include the pseudoforces in the calculation of the
net force acting on the body under consideration.

7. The potential energy of a body subjected to a conservative force is always
undetermined upto a constant. For example, the point where the potential
energy is zero is a matter of choice. For the gravitational  potential energy mgh,
the zero of the potential energy is chosen to be the ground. For the spring
potential energy kx2/2 , the zero of the potential energy is the equilibrium position
of the oscillating mass.

8. Every force encountered in mechanics does not have an associated potential
energy. For example, work done by friction over a closed path is not zero and no
potential energy can be associated with friction.

9. During a collision : (a) the total linear momentum is conserved at each instant of
the collision ; (b) the kinetic energy conservation (even if the collision is  elastic)
applies after the collision is over and does not hold at every instant of the collision.
In fact the two colliding objects are deformed and may be momentarily at rest
with respect to each other.
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EXERCISES

6.1 The sign of work done by a force on a body is important to understand.  State carefully
if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the

bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body

sliding down an inclined plane,
(d) work done by an applied force on

a body moving on a rough
horizontal plane with uniform
velocity,

(e) work done by the resistive force of
air on a vibrating pendulum in
bringing it to rest.

6.2 A body of mass 2 kg initially at rest
moves under the action of an applied
horizontal force of 7 N on a table with
coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in

10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the

body in 10 s,
(d) change in kinetic energy of the

body in 10 s,

and interpret your results.

6.3 Given in Fig. 6.11 are examples of some
potential energy functions in one
dimension. The total energy of the
particle is indicated by a cross on the
ordinate axis. In each case, specify the
regions, if any, in which the particle
cannot be found for the given energy.
Also, indicate the minimum total
energy the particle must have in each
case. Think of simple physical contexts
for which these potential energy shapes
are relevant.

Fig. 6.11
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6.4 The potential energy function for a
particle executing linear simple
harmonic motion is given by V(x) =

kx2/2, where k  is the force constant
of the oscillator.  For k  = 0.5 N m-1,
the graph of V(x)  versus  x  is shown
in Fig. 6.12.  Show that a particle of
total energy 1 J moving under this
potential must ‘turn back’ when it
reaches x  = ± 2 m.

6.5 Answer the following :
(a) The casing of a rocket in flight

burns up due to friction.  At
whose expense is the heat
energy required for burning
obtained?  The rocket or the
atmosphere?

(b) Comets move around the sun
in highly elliptical orbits.  The
gravitational force on the
comet due to the sun is not
normal to the comet’s velocity
in general.  Yet the work done by the gravitational force over every complete orbit
of the comet is zero.  Why ?

(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy
gradually due to dissipation against atmospheric resistance, however small. Why
then does its speed increase progressively as it comes closer and closer to the earth ?

(d) In Fig. 6.13(i) the man walks  2 m carrying a mass of 15 kg on his hands. In Fig.
6.13(ii), he walks the same distance pulling the rope behind him. The rope goes
over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work
done greater ?

6.6 Underline the correct alternative :
(a) When a conservative force does positive work on a body, the potential energy of

the body increases/decreases/remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/potential

energy.
(c) The rate of change of total momentum of a many-particle system is proportional

to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after

the collision are the total kinetic energy/total linear momentum/total energy of
the system of two bodies.

6.7 State if each of the following statements is true or false.  Give reasons for your answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is

conserved.
(b) Total energy of a system is always conserved, no matter what internal and external

forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in

nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial

kinetic energy of the system.

6.8 Answer carefully, with reasons :
(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved

during the short time of collision of the balls (i.e. when they are in contact) ?
(b) Is the total linear momentum conserved during the short time of an elastic collision

of two balls ?

Fig. 6.13

Fig. 6.12
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(c) What are the answers to (a) and (b) for an inelastic collision ?
(d) If the potential energy of two billiard balls depends only on the separation distance

between their centres, is the collision elastic or inelastic ?  (Note, we are talking
here of potential energy corresponding to the force during collision, not gravitational
potential energy).

6.9 A body is initially at rest. It undergoes one-dimensional motion with constant
acceleration.  The power delivered to it at time t is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

6.10 A body is moving unidirectionally under the influence of a source of constant power.
Its displacement in time t

 
is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

6.11 A body constrained to move along the z-axis of a coordinate system is subject to a
constant force F given by

Nˆ 3ˆ 2ˆ  kjiF ++−=

where k ,j ,i ˆˆˆ  are unit vectors along the x-, y- and z-axis of the system respectively.

What is the work done by this force in moving the body a distance of 4 m along the
z-axis ?

6.12 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic
energy 10 keV, and the second with 100 keV.  Which is faster, the electron or the
proton ? Obtain the ratio of their speeds. (electron mass = 9.11×10-31 kg, proton mass
= 1.67×10–27 kg, 1 eV = 1.60 ×10–19 J).

6.13 A rain drop of radius 2 mm falls from a height of 500 m above the ground.  It falls with
decreasing acceleration (due to viscous resistance of the air) until at half its original
height, it attains its maximum (terminal) speed, and moves with uniform speed
thereafter.  What is the work done by the gravitational force on the drop in the first
and second half of its journey ? What is the work done by the resistive force in the
entire journey if its speed on reaching the ground is 10 m s–1  ?

6.14 A molecule in a gas container hits a horizontal wall with speed 200 m s–1 and angle 30°
with the normal, and rebounds with the same speed.  Is momentum conserved in the
collision ?  Is the collision elastic or inelastic ?

6.15 A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3

in 15 min.  If the tank is 40 m above the ground, and the efficiency of the pump is 30%,
how much electric power is consumed by the pump ?

6.16 Two identical ball bearings in contact with each other and resting on a frictionless
table are hit head-on by another ball bearing of the same mass moving initially with a
speed V.  If the collision is elastic, which of the following  (Fig. 6.14) is a possible result
after collision ?

Fig. 6.14
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6.17 The bob A of a pendulum released from 30o to the
vertical hits another bob B of the same mass at rest
on a table as shown in Fig. 6.15.  How high does
the bob A rise after the collision ? Neglect the size of
the bobs and assume the collision to be elastic.

6.18 The bob of a pendulum is released from a horizontal
position. If the length of the pendulum is 1.5 m,
what is the speed with which the bob arrives at the
lowermost point, given that it dissipated 5% of its
initial energy against air resistance ?

6.19 A trolley of mass 300 kg carrying a sandbag of 25 kg
is moving uniformly with a speed of 27 km/h on a
frictionless track.  After a while, sand starts leaking
out of a hole on the floor of the trolley at the rate of
0.05 kg s–1.  What is the speed of the trolley after the entire sand bag is empty ?

6.20 A body of mass 0.5 kg travels in a straight line with velocity  v =a x3/2  where a = 5 m–1/2  s–1.
What is the work done by the net force during its displacement from x = 0 to
x = 2 m ?

6.21 The blades of a windmill sweep out a circle of area A.  (a) If the wind flows at a
velocity v  perpendicular to the circle, what is the mass of the air passing through it
in time t ?  (b) What is the kinetic energy of the air ?  (c) Assume that the windmill
converts 25% of the wind’s energy into electrical energy, and that A = 30 m2, v = 36
km/h and the density of air is 1.2 kg m–3.  What is the electrical power produced ?

6.22 A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a
height of  0.5 m each time. Assume that the potential energy lost each time she
lowers the mass is dissipated. (a) How much work does she do against the gravitational
force ?  (b) Fat supplies 3.8 × 107J of energy per kilogram which is converted to
mechanical energy with a 20% efficiency rate.  How much fat will the dieter use up?

6.23 A family uses 8 kW of power. (a) Direct solar energy is incident on the horizontal
surface at an average rate of 200 W per square meter.  If 20% of this energy can be
converted  to  useful  electrical  energy, how large an area is needed to supply 8 kW?
(b) Compare this area to that of the roof of a typical house.

Additional Exercises

6.24 A bullet of mass 0.012 kg and horizontal speed 70 m s–1 strikes a block of wood of
mass 0.4 kg and instantly comes to rest with respect to the block. The block is
suspended from the ceiling by means of thin wires. Calculate the height to which
the block rises.  Also, estimate the amount of heat produced in the block.

6.25 Two inclined frictionless tracks, one gradual and the other steep meet at A from
where two stones are allowed to slide down from rest, one on each track (Fig. 6.16).
Will the stones reach the bottom at the same time? Will they reach there with the
same speed?  Explain. Given θ

1
 = 300, θ

2
 = 600, and h = 10 m, what are the speeds and

times taken by the two stones ?

Fig. 6.16

Fig. 6.15
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6.26 A 1 kg block situated on a rough incline is connected to a spring of spring constant 100
N m–1 as shown in Fig. 6.17.  The block is released from rest with the spring in the
unstretched position. The block moves 10 cm down the incline before coming to rest.
Find the coefficient of friction between the block and the incline. Assume that the
spring has a negligible mass and the pulley is frictionless.

Fig. 6.17

6.27 A bolt of mass 0.3 kg falls from the ceiling of an elevator moving down with an uniform
speed of 7 m s–1.  It hits the floor of the elevator (length of the elevator = 3 m) and does
not rebound. What is the heat produced by the impact ? Would your answer be different
if the elevator were stationary ?

6.28 A trolley of mass 200 kg moves with a uniform speed of 36 km/h on a frictionless track.
A child of mass 20 kg runs on the trolley from one end to the other (10 m away) with a
speed of 4 m s–1 relative to the trolley in a direction opposite to the its motion, and
jumps out of the trolley. What is the final speed of the trolley ? How much has the
trolley moved from the time the child begins to run ?

6.29 Which of the following potential energy curves in Fig. 6.18 cannot possibly describe the
elastic collision of two billiard balls ?  Here r is the distance between centres of the balls.

Fig. 6.18

6.30 Consider the decay of a free neutron at rest :  n gp + e–
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Show that the two-body decay of this type must necessarily give an electron of fixed
energy and, therefore, cannot account for the observed continuous energy distribution
in the β-decay of a neutron or a nucleus (Fig. 6.19).

Fig. 6.19

[Note: The simple result of this exercise was one among the several arguments advanced by W.
Pauli to predict the existence of a third particle in the decay products of β-decay.  This
particle is known as neutrino.  We now know that it is a particle of intrinsic spin ½  (like
e—, p or n), but is neutral, and either massless or having an extremely small mass
(compared to the mass of electron) and which interacts very weakly with matter. The

correct decay process of neutron is : n g p + e – + ν ]
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APPENDIX 6.1 : POWER CONSUMPTION IN WALKING

The table below lists the approximate power expended by an adult human of mass 60 kg.

Table 6.4 Approximate power consumption

Mechanical work must not be confused with the everyday usage
of the term work.  A woman standing with a very heavy load on
her head may get very tired.  But no mechanical work is involved.
That is not to say that mechanical work cannot be estimated in
ordinary human activity.

Consider a person walking with constant speed v
0
. The mechanical work he does may be estimated simply

with the help of the work-energy theorem. Assume :
(a) The major work done in walking is due to the acceleration and deceleration of the legs with each stride

(See Fig. 6.20).
(b) Neglect air resistance.
(c) Neglect the small work done in lifting the legs against gravity.
(d) Neglect the swinging of hands etc. as is common in walking.

As we can see in Fig. 6.20, in each stride the leg is brought from rest to a speed, approximately equal to the
speed of walking, and then brought to rest again.

Fig. 6.20 An illustration of a single stride in walking. While the first leg is maximally off the round, the second leg

is on the ground and vice-versa

The work done by one leg in each stride is 2
0l v m   by the work-energy theorem. Here m

l
  is the mass of the leg.

Note 2/2
0l v m  energy is expended by one set of leg muscles to bring the foot from rest to speed v

0
 while an

additional 2/2
0l v m   is expended by a complementary set of leg muscles to bring the foot to rest from speed v

0
.

Hence work done by both legs in one stride is (study Fig. 6.20 carefully)

2
0ls v mW 2= (6.34)

Assuming m
l  
= 10 kg and slow running of a nine-minute mile which translates to 3 m s-1 in SI units, we obtain

Ws = 180 J /stride

If we take a stride to be 2 m long, the person covers 1.5 strides per second at his speed of  3 m s-1.  Thus the
power expended

     

        =  270 W

We must bear in mind that this is a lower estimate since several avenues of power loss (e.g. swinging of hands,
air resistance etc.) have been ignored.  The interesting point is that we did not worry about the forces involved.
The forces, mainly friction and those exerted on the leg by the muscles of the rest of the body, are hard to
estimate. Static friction does no work and we bypassed the impossible task of estimating the work done by the
muscles by taking recourse to the work-energy theorem. We can also see the advantage of a wheel. The wheel
permits smooth locomotion without the continual starting and stopping in mammalian locomotion.

2018-19



CHAPTER SEVEN

SYSTEMS OF PARTICLES AND ROTATIONAL MOTION

7.1 INTRODUCTION

In the earlier chapters we primarily considered the motion
of a single particle. (A particle is ideally represented as a
point mass having no size.)  We applied the results of our
study even to the motion of bodies of finite size, assuming
that motion of such bodies can be described in terms of the
motion of a particle.

Any real body which we encounter in daily life has a
finite size.  In dealing with the motion of extended bodies
(bodies of finite size) often the idealised model of a particle is
inadequate.  In this chapter we shall try to go beyond this
inadequacy.  We shall attempt to build an understanding of
the motion of extended bodies.  An extended body, in the
first place, is a system of particles.  We shall begin with the
consideration of motion of the system as a whole.  The centre
of mass of a system of particles will be a key concept here.
We shall discuss the motion of the centre of mass of a system
of particles and usefulness of this concept in understanding
the motion of extended bodies.

A large class of problems with extended bodies can be
solved by considering them to be rigid bodies.  Ideally a
rigid body is a body with a perfectly definite and
unchanging shape.  The distances between all pairs of
particles of such a body do not change. It is evident from
this definition of a rigid body that no real body is truly rigid,
since real bodies deform under the influence of forces. But in
many situations the deformations are negligible.  In a number
of situations involving bodies such as wheels, tops, steel
beams, molecules and planets on the other hand, we can ignore
that they warp (twist out of shape), bend or vibrate and treat
them as rigid.

7.1.1 What kind of motion can a rigid body have?

Let us try to explore this question by taking some examples
of the motion of rigid bodies.  Let us begin with a rectangular
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7.2 Centre of mass

7.3 Motion of centre of mass

7.4 Linear momentum of a

system of particles

7.5 Vector product of two

vectors

7.6 Angular velocity and its

relation with linear velocity

7.7 Torque and angular

momentum
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7.9 Moment of inertia

7.10 Theorems of perpendicular
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Points to Ponder

Exercises

Additional exercises
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block sliding down an inclined plane without any
sidewise movement.  The block is taken as a rigid
body.  Its motion down the plane is such that all
the particles of the body are moving together,
i.e. they have the same velocity at any instant
of time. The rigid body here is in pure
translational motion (Fig. 7.1).

In pure translational motion at any
instant of time, all particles of the body have
the same velocity.

Consider now the rolling motion of a solid
metallic or wooden cylinder down the same
inclined plane (Fig. 7.2). The rigid body in this
problem, namely the cylinder, shifts from the
top to the bottom of the inclined plane, and thus,
seems to have translational motion.  But as Fig.
7.2 shows, all its particles are not moving with
the same velocity at any instant. The body,
therefore, is not in pure translational motion.
Its motion is translational plus ‘something else.’

In order to understand what this ‘something
else’ is, let us take a rigid body so constrained
that it cannot have translational motion.  The

most common way to constrain a rigid body so
that it does not have translational motion is to
fix it along a straight line. The only possible
motion of such a rigid body is rotation. The line
or fixed axis about which the body is rotating is
its axis of rotation. If you look around, you will
come across many examples of rotation about
an axis, a ceiling fan, a potter’s wheel, a giant
wheel in a fair, a merry-go-round and so on (Fig
7.3(a) and (b)).

(a)

(b)
Fig. 7.3 Rotation about a fixed axis

(a) A ceiling fan

(b) A potter’s wheel.

Let us try to understand what rotation is,
what characterises rotation.  You may notice that
in rotation of a rigid body about a fixed axis,

Fig 7.1 Translational (sliding) motion of a block down

an inclined plane.

(Any point like P
1
 or P

2 
of the block moves

with the same velocity at any instant of time.)

Fig. 7.2 Rolling motion of a cylinder. It is not pure

translational motion. Points P
1
, P

2
,
 
P

3
 and P

4

have different velocities (shown by arrows)

at any instant of time. In fact, the velocity of

the point of contact P
3 
is zero at any instant,

if the cylinder rolls without slipping.
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every particle of the body moves in a circle,
which lies in a plane perpendicular to the axis

and has its centre on the axis.  Fig. 7.4 shows

the rotational motion of a rigid body about a fixed

axis (the z-axis of the frame of reference).  Let P
1

be a particle of the rigid body, arbitrarily chosen

and at a distance r
1
 from fixed axis.  The particle

P
1
 describes a circle of radius  r

1 
with its centre

C
1
 on the fixed axis.  The circle lies in a plane

perpendicular to the axis. The figure also shows

another particle P
2
 of the rigid body, P

2 
is at a

distance r
2 
from the fixed axis. The particle P

2

moves in a circle of radius r
2 
and with centre C

2

on the axis. This circle, too, lies in a plane

perpendicular to the axis.  Note that the circles

described by P
1
 and P

2
 may lie in different planes;

both these planes, however, are perpendicular

to the fixed axis.  For any particle on the axis

like P
3
, r = 0. Any such particle remains

stationary while the body rotates.  This is

expected since the axis of rotation is fixed.

Fig. 7.5 (a) A spinning top

(The point of contact of the top with the

ground, its tip O, is fixed.)

Fig. 7.5 (b) An oscillating table fan with rotating

blades. The pivot of the fan, point O, is

fixed. The blades of the fan are under

rotational motion, whereas, the axis of

rotation of  the fan blades is oscillating.

Fig. 7.4 A rigid body rotation about the z-axis (Each

point of the body such as P
1
 or

P
2
 describes a circle with its centre (C

1

or C
2
) on the axis of rotation.  The radius of

the circle (r
1
or r

2
) is the perpendicular

distance of the point (P
1
 or P

2
) from the

axis. A point on the axis like P
3 

remains

stationary).

Axis of oscillation

Axis of
rotation

from blades

In some examples of rotation, however, the
axis may not be fixed.  A prominent example of
this kind of rotation is a top spinning in place
[Fig. 7.5(a)].  (We assume that the top does not
slip from place to place and so does not have
translational motion.)  We know from experience
that the axis of such a spinning top moves
around the vertical through its point of contact
with the ground, sweeping out a cone as shown
in Fig. 7.5(a).  (This movement of the axis of the
top around the vertical is termed precession.)
Note, the point of contact of the top with
ground is fixed. The axis of rotation of the top
at any instant passes through the point of
contact. Another simple example of this kind of
rotation is the oscillating table fan or a pedestal
fan [Fig.7.5(b)]. You may have observed that the
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axis of rotation of such a fan has an oscillating
(sidewise) movement in a horizontal plane about
the vertical through the point at which the axis
is pivoted (point O in Fig. 7.5(b)).

While the fan rotates and its axis moves
sidewise, this point is fixed.  Thus, in more
general cases of rotation, such as the rotation
of a top or a pedestal fan, one point and not
one line, of the rigid body is fixed. In this case
the axis is not fixed, though it always passes
through the fixed point. In our study, however,
we mostly deal with the simpler and special case
of rotation in which one line (i.e. the axis) is fixed.

Thus, for us rotation will be about a fixed axis
only unless stated otherwise.

The rolling motion of a cylinder down an
inclined plane is a combination of rotation about
a fixed axis and translation.  Thus, the
‘something else’ in the case of rolling motion
which we referred to earlier is rotational motion.
You will find Fig. 7.6(a) and (b) instructive from
this point of view. Both these figures show
motion of the same body along identical
translational trajectory. In one case, Fig. 7.6(a),
the motion is a pure translation; in the other
case [Fig. 7.6(b)] it is a combination of
translation and rotation. (You may try to
reproduce the two types of motion shown, using
a rigid object like a heavy book.)

We now recapitulate the most important
observations of the present section: The motion
of a rigid body which is not pivoted or fixed in
some way is either a pure translation or a
combination of translation and rotation. The
motion of a rigid body which is pivoted or fixed
in some way is rotation.  The rotation may be
about an axis that is fixed (e.g. a ceiling fan) or
moving (e.g. an oscillating table fan [Fig.7.5(b)]).
We shall, in the present chapter, consider
rotational motion about a fixed axis only.

7.2  CENTRE OF MASS

We shall first see what the centre of mass of a
system of particles is and then discuss its
significance. For simplicity we shall start with
a two particle system. We shall take the line
joining the two particles to be the x- axis.

Fig. 7.7

Let the distances of the two particles be x
1

and x
2
 respectively from some origin O. Let m

1

and m
2
 be respectively the masses of the two

Fig. 7.6(a) Motion of a rigid body which is pure

translation.

Fig. 7.6(b) Motion of a rigid body which is a

combination of translation and

rotation.

Fig 7.6 (a) and 7.6 (b) illustrate different motions of

the same body. Note P is an arbitrary point of the

body; O is the centre of mass of the body, which is

defined in the next section. Suffice to say here that

the trajectories of O are the translational trajectories

Tr
1
 and Tr

2 
of the body. The positions O and P at

three different instants of time are shown by O
1
, O

2
,

and O
3
, and P

1
, P

2
 and P

3
, respectively, in both

Figs. 7.6 (a) and (b) . As seen from Fig. 7.6(a), at any

instant the velocities of any particles like O and P of

the body are the same in pure translation. Notice, in

this case the orientation of OP, i.e. the angle OP makes

with a fixed direction, say the horizontal, remains

the same, i.e. α
1 

= α
2
 = α

3
. Fig. 7.6 (b) illustrates a

case of combination of translation and rotation. In

this case, at any instants the velocities of O and P

differ. Also, α
1
, α

2
 and α

3
 may all be different.
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particles. The centre of mass of the system is
that   point C which is at a distance X from O,
where X is given by

1 1 2 2

1 2

m x m x
X

m m

+
=

+ (7.1)

In Eq. (7.1), X can be regarded as the mass-
weighted mean of  x

1 
and x

2
. If the two particles

have the same mass m
1
 = m

2
 = m

, 
then

1 2 1 2

2 2

mx mx x x
X

m

+ +
= =

Thus, for two particles of equal mass the
centre of mass lies exactly midway between
them.

       If we have n particles of masses m
1
, m

2
,

...m
n
 respectively, along a straight line taken as

the x- axis, then by definition the position of the
centre of the mass of the system of particles is
given by.

X
m x m x m x

m m m

m x

m

m x

m
n n

n

i i

i

n

i

i

n

i i

i

= = ==

=

∑

∑

∑
∑

1 1 2 2

1 2

1

1

+ + ... +

+ +... +
  (7.2)

where  x
1
, x

2
,...x

n
 are the distances of the

particles from the origin; X is also measured from

the same origin. The symbol ∑ (the Greek letter

sigma) denotes summation, in this case over n
particles. The sum

im M=∑
is the total mass of the system.

Suppose that we have three particles, not
lying in a straight line. We may define x– and y–
axes in the plane in which the particles lie and
represent the positions of the three particles by
coordinates (x

1
,y

1
), (x

2
,y

2
) and (x

3
,y

3
) respectively.

Let the masses of the three particles be m
1
, m

2

and m
3 
respectively. The centre of mass C of

the system of the three particles is defined and
located by the coordinates (X, Y) given by

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ + (7.3a)

1 1 2 2 3 3

1 2 3

m y m y m y
Y

m m m

+ +
=

+ + (7.3b)

For the particles of equal mass m = m
1
 = m

2

= m
3
,

1 2 3 1 2 3( )

3 3

m x x x x x x
X

m

+ + + +
= =

1 2 3 1 2 3( )

3 3

m y y y y y y
Y

m

+ + + +
= =

Thus, for three particles of equal mass, the
centre of mass coincides with the centroid of the
triangle formed by the particles.

Results of Eqs. (7.3a) and (7.3b) are
generalised easily to a system of n particles, not
necessarily lying in a plane, but distributed in
space. The centre of mass of such a system is
at (X, Y, Z ), where

i im x
X

M
= ∑ (7.4a)

i im y
Y

M
= ∑ (7.4b)

and  
i im z

Z
M

= ∑ (7.4c)

Here M = im∑ is the total mass of the

system. The index i runs from 1 to n; m
i
 is the

mass of the ith particle and the position of the
ith particle is given by (x

i
, y

i
, z

i
).

Eqs. (7.4a), (7.4b) and (7.4c) can be
combined into one equation using the notation

of position vectors. Let  ir  be the position vector

of the ith particle and R be the position vector of
the centre of mass:

 �
i i i ix y z= + +r i j k� �

and �X Y Z= + +R i j k� �

Then  
i im

M
= ∑ r

R (7.4d)

The sum on the right hand side is a vector
sum.

Note the economy of expressions we achieve
by use of vectors. If the origin of the frame of
reference (the coordinate system) is chosen to

be the centre of mass then  0i im =∑ r for the

given system of particles.
A rigid body, such as a metre stick or a

flywheel, is a system of closely packed particles;
Eqs. (7.4a), (7.4b), (7.4c) and (7.4d) are
therefore, applicable to a rigid body. The number
of particles (atoms or molecules) in such a body
is so large that it is impossible to carry out the
summations over individual particles in these
equations. Since the spacing of the particles is
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small, we can treat the body as a continuous
distribution of mass. We subdivide the body into
n small elements of mass;  ∆m

1
, ∆m

2
... ∆m

n
; the

ith element  ∆m
i 
is taken to be located about the

point  (x
i
, y

i
, z

i
). The coordinates of the centre of

mass are then approximately given by

( ) ( ) ( )
, ,

i i i i i i

i i i

m x m y m z
X Y Z

m m m

∆ ∆ ∆
= = =

∆ ∆ ∆
∑ ∑ ∑
∑ ∑ ∑

As we make n bigger and bigger and each
∆m

i
 smaller and smaller, these expressions

become exact. In that case, we denote the sums
over i by integrals. Thus,

∆m m Mi → =∫∑ d ,

( ) ,∆m x x mi i → ∫∑ d

( ) ,∆m y y mi i → ∫∑ d

 and (∆m z z mi i) → ∫∑ d

Here M is the total mass of the body. The
coordinates of the centre of mass now are

X
M

x m Y
M

y m Z
M

z m= = =∫∫ ∫
1 1 1

d d d, and   (7.5a)

The vector expression equivalent to these
three scalar expressions is

R r= ∫
1

M
md (7.5b)

If we choose, the centre of mass as the origin
of our coordinate system,

=R 0

i.e., r 0dm =∫
or x m y m z md d d= = =∫ ∫∫ 0 (7.6)

Often we have to calculate the centre of mass
of homogeneous bodies of regular shapes like
rings, discs, spheres, rods etc. (By a
homogeneous body we mean a body with
uniformly distributed mass.) By using symmetry
consideration, we can easily show that the
centres of mass of these bodies lie at their
geometric centres.

Let us consider a thin rod, whose width and
breath (in case the cross section of the rod is
rectangular) or radius (in case the cross section
of the rod is cylindrical) is much smaller than
its length. Taking the origin to be at the
geometric centre of the rod and x-axis to be
along the length of the rod, we can say that on
account of reflection symmetry, for every
element dm of the rod at x, there is an element
of the same mass dm located at –x (Fig. 7.8).

The net contribution of every such pair to

the integral and hence the integral  itself

is zero.  From Eq. (7.6), the point for which the
integral  itself is zero, is the centre of mass.
Thus, the centre of mass of a homogenous thin
rod coincides with its geometric centre. This can
be understood on the basis of reflection symmetry.

The same symmetry argument will apply to
homogeneous rings, discs, spheres, or even
thick rods of circular or rectangular cross
section. For all such bodies you will realise that
for every element dm at a point (x, y, z ) one can
always take an element of the same mass at
the point (–x, –y, –z ). (In other words, the origin
is a point of reflection symmetry for these
bodies.) As a result, the integrals in Eq. (7.5 a)
all are zero. This means that for all the above
bodies, their centre of mass coincides with their
geometric centre.

Example 7.1 Find the centre of mass of
three particles at the vertices of an
equilateral triangle. The masses of the
particles are 100g, 150g, and 200g
respectively. Each side of the equilateral
triangle is 0.5m long.

Answer

Fig. 7.9Fig. 7.8 Determining the CM of a thin rod.

u
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u

u

With the x–and y–axes chosen as shown in Fig.
7.9, the coordinates of points O, A and B forming
the equilateral triangle are respectively (0,0),

(0.5,0), (0.25,0.25 3 ). Let the masses 100 g,

150g and 200g be located at O, A and B be
respectively. Then,

1 1 2 2 3 3

1 2 3

m x m x m x
X

m m m

+ +
=

+ +

( )100 0 150(0.5) 200(0.25) g m

(100 150 200) g

+ +  
  =

+ +

75 50 125 5
m m m

450 450 18

+
= = =

100(0) 150(0) 200(0.25 3) g m

450 g
Y

  + +
  

=

50 3 3 1
m m m

450 9 3 3
= = =

The centre of mass C is shown in the figure.
Note that it is not the geometric centre of the
triangle OAB. Why? t

Example 7.2  Find the centre of mass of a
triangular lamina.

Answer  The lamina (∆LMN ) may be subdivided
into narrow strips each parallel to the base (MN)

as shown in Fig. 7.10

Fig. 7.10

By symmetry each strip has its centre of
mass at its midpoint. If we join the midpoint of
all the strips we get the median LP. The centre
of mass of the triangle as a whole therefore, has
to lie on the median LP. Similarly, we can argue
that it lies on the median MQ and NR. This
means the centre of mass lies on the point of

concurrence of the medians, i.e. on the centroid
G of the triangle.       t

Example 7.3 Find the centre of mass of a
uniform L-shaped lamina (a thin flat plate)
with dimensions as shown. The mass of
the lamina is 3 kg.

Answer  Choosing the X and Y axes as shown
in Fig. 7.11 we have the coordinates of the
vertices of the L-shaped lamina as given in the
figure. We can think of the
L-shape to consist of 3 squares each of length
1m. The mass of each square is 1kg, since the
lamina is uniform. The centres of mass C

1
, C

2

and C
3
 of the squares are, by symmetry, their

geometric centres and have coordinates (1/2,1/2),
(3/2,1/2), (1/2,3/2) respectively. We take the
masses of the squares to be concentrated at
these points. The centre of mass of the whole
L shape (X, Y) is the centre of mass of these
mass points.

Fig. 7.11

Hence

[ ]
( )

1(1/2) 1(3/2) 1(1/2) kg m

1 1 1 kg
X

+ +
=

+ +  
5

m
6

=

[ ]
( )

1(1/2) 1(1/2) 1(3/2) kg m 5
m

1 1 1 kg 6
Y

  + +
  = =

+ +

The centre of mass of the L-shape lies on
the line OD. We could have guessed this without
calculations. Can you tell why? Suppose, the
three squares that make up the L shaped lamina
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of Fig. 7.11 had different masses. How will you
then determine the centre of mass of the lamina?
t

7.3  MOTION OF CENTRE OF MASS

Equipped with the definition of the centre of

mass, we are now in a position to discuss its

physical importance for a system of n particles.

We may rewrite Eq.(7.4d) as

1 1 2 2 ...i i n nM m m m m= = + + +∑R r r r r (7.7)

Differentiating the two sides of the equation
with respect to time we get

1 2
1 2

dd dd
...

d d d
n

nM m m m
t t t dt

= + + +
rr rR

or

1 1 2 2 ... n nM m m m= + + +V v v v (7.8)

where  ( )1 1d /dt=v r  is the velocity of the first

particle ( )2 2d dt=v r is the velocity of the

second particle etc. and d /dt=V R  is the

velocity of the centre of mass. Note that we

assumed the masses m
1
, m

2
, ... etc. do not

change in time. We have therefore, treated them

as constants in differentiating the equations

with respect to time.

Differentiating Eq.(7.8) with respect to time,
we obtain

1 2
1 2

dd dd
...

d d d d
n

nM m m m
t t t t

= + + +
vv vV

or

1 1 2 2 ... n nM m m m= + + +A a a a (7.9)

where ( )1 1d /dt=a v  is the acceleration of the

first particle,  ( )2 2d /dt=a v  is the acceleration

of the second particle etc. and  ( )d /dt=A V  is

the acceleration of the centre of mass of the
system of particles.

Now, from Newton’s second law, the force

acting on the first particle is given by 1 1 1m=F a .

The force acting on the second particle is given

by 2 2 2m=F a and so on. Eq. (7.9) may be written

as

1 2 ... nM = + + +A F F F (7.10)

Thus, the total mass of a system of particles
times the acceleration of its centre of mass is
the vector sum of all the forces acting on the
system of particles.

Note when we talk of the force 1F on the first

particle, it is not a single force, but the vector
sum of all the forces on the first particle; likewise
for the second particle etc. Among these forces
on each particle there will be external forces
exerted by bodies outside the system and also
internal forces exerted by the particles on one
another. We know from Newton’s third law that
these internal forces occur in equal and opposite
pairs and in the sum of forces of Eq. (7.10),
their contribution is zero. Only the external
forces contribute to the equation. We can then
rewrite Eq. (7.10) as

extM =A F (7.11)

where extF  represents the sum of all external

forces acting on the particles of the system.
Eq. (7.11) states that the centre of mass

of a system of particles moves as if all the
mass of the system was concentrated at the
centre of mass and all the external forces
were applied at that point.

Notice, to determine the motion of the centre
of mass no knowledge of internal forces of the
system of particles is required; for this purpose
we need to know only the external forces.

To obtain Eq. (7.11) we did not need to
specify the nature of the system of particles.
The system may be a collection of particles in
which there may be all kinds of internal
motions, or it may be a rigid body which has
either pure translational motion or a
combination of translational and rotational
motion. Whatever is the system and the motion
of its individual particles, the centre of mass
moves according to Eq. (7.11).

Instead of treating extended bodies as single
particles as we have done in earlier chapters,
we can now treat them as systems of particles.
We can obtain the translational component of
their motion, i.e. the motion of the centre of mass
of the system, by taking the mass of the whole
system to be concentrated at the centre of mass
and all the external forces on the system to be
acting at the centre of mass.

This is the procedure that we followed earlier
in analysing forces on bodies and solving
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problems without explicitly outlining and
justifying the procedure. We now realise that in
earlier studies we assumed, without saying so,
that rotational motion and/or internal motion
of the particles were either absent or negligible.
We no longer need to do this. We have not only
found the justification of the procedure we
followed earlier; but we also have found how to
describe and separate the translational motion
of (1) a rigid body which may be rotating as
well,  or (2) a system of particles with all kinds
of internal motion.

Fig. 7.12 The centre of mass of the fragments

of the projectile continues along the

same parabolic path which it would

have followed if there were no

explosion.

Figure 7.12 is a good illustration of Eq.
(7.11). A projectile, following the usual parabolic
trajectory, explodes into fragments midway in
air. The forces leading to the explosion are
internal forces. They contribute nothing to the
motion of the centre of mass. The total external
force, namely, the force of gravity acting on the
body, is the same before and after the explosion.
The centre of mass under the influence of the
external force continues, therefore, along the
same parabolic trajectory as it would have
followed if there were no explosion.

7.4 LINEAR MOMENTUM OF A SYSTEM OF
PARTICLES

Let us recall that the linear momentum of a
particle is defined as

m=p v (7.12)

Let us also recall that Newton’s second law
written in symbolic form for a single particle is

d

dt
=

p
F (7.13)

where F is the force on the particle. Let us
consider a system of n particles with masses m

1
,

m
2
,...m

n 
respectively and velocities 1 2, ,....... nv v v

respectively. The particles may be interacting
and have external forces acting on them. The

linear momentum of the first particle is 1 1m v ,

of the second particle is 2 2m v  and so on.

For the system of n particles, the linear
momentum of the system is defined to be the
vector sum of all individual particles of the
system,

1 2 ... n= + + +P p p p

1 1 2 2 ... n nm m m= + + +v v v (7.14)

Comparing this with Eq. (7.8)

M=P V (7.15)

Thus, the total momentum of a system
of particles is equal to the product of the
total mass of the system and the velocity of
its centre of mass. Differentiating Eq. (7.15)
with respect to time,

d d

d d
M M

t t
= =

P V
A (7.16)

Comparing Eq.(7.16) and Eq. (7.11),

d

d
ext

t
=

P
F (7.17)

This is the statement of Newton’s second law
of motion extended to a system of particles.

Suppose now, that the sum of external
forces acting on a system of particles is zero.
Then from Eq.(7.17)

or
d

0
dt

=
P

P  = Constant (7.18a)

Thus, when the total external force acting
on a system of particles is zero, the total linear
momentum of the system is constant. This is
the law of conservation of the total linear
momentum of a system of particles. Because of
Eq. (7.15), this also means that when the
total external force on the system is zero
the velocity of the centre of mass remains
constant. (We assume throughout the
discussion on systems of particles in this
chapter that the total mass of the system
remains constant.)

Note that on account of the internal forces,
i.e. the forces exerted by the particles on one
another, the individual particles may have
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complicated trajectories. Yet, if the total external
force acting on the system is zero, the centre of
mass moves with a constant velocity, i.e., moves
uniformly in a straight line like a free particle.

The vector Eq. (7.18a) is equivalent to three
scalar equations,

P
x
 = c

1
, P

y
 = c

2
 and P

z
 = c

3
(7.18 b)

Here P
x
, P

y
 and P

z
 are the components of the

total linear momentum vector P along the x–, y–

and z–axes respectively; c
1
, c

2
 and c

3
 are

constants.

(a) (b)

Fig. 7.13 (a) A heavy nucleus radium (Ra) splits into

a lighter nucleus radon (Rn) and an alpha

particle (nucleus of helium atom). The CM

of the system is in uniform motion.

(b) The same spliting of the heavy nucleus

radium (Ra) with the centre of mass at

rest. The two product particles fly back

to back.

As an example, let us consider the
radioactive decay of a moving unstable particle,
like the nucleus of radium. A radium nucleus
disintegrates into a nucleus of radon and an
alpha particle. The forces leading to the decay
are internal to the system and the external
forces on the system are negligible. So the total
linear momentum of the system is the same
before and after decay. The two particles
produced in the decay, the radon nucleus and
the alpha particle, move in different directions
in such a way that their centre of mass moves
along the same path along which the original
decaying radium nucleus was moving
[Fig. 7.13(a)].

If we observe the decay from the frame of
reference in which the centre of mass is at rest,
the motion of the particles involved in the decay
looks particularly simple; the product particles

move back to back with their centre of mass
remaining at rest as shown in Fig.7.13 (b).

In many problems on the system of
particles, as in the above radioactive decay
problem, it is convenient to work in the centre
of mass frame rather than in the laboratory
frame of reference.

In astronomy, binary (double) stars is a
common occurrence. If there are no external
forces, the centre of mass of a double star
moves like a free particle, as shown in Fig.7.14
(a). The trajectories of the two stars of equal
mass are also shown in the figure; they look
complicated. If we go to the centre of mass
frame, then we find that there the two stars
are moving in a circle, about the centre of
mass, which is at rest. Note that the position
of the stars have to be diametrically opposite
to each other [Fig. 7.14(b)]. Thus in our frame
of reference, the trajectories of the stars are a
combination of (i) uniform motion in a straight
line of the centre of mass and (ii) circular
orbits of the stars about the centre of mass.

As can be seen from the two examples,
separating the motion of different parts of a
system into motion of the centre of mass and
motion about the centre of mass is a very
useful technique that helps in understanding
the motion of the system.

7.5  VECTOR PRODUCT OF TWO VECTORS

We are already familiar with vectors and their
use in physics. In chapter 6 (Work, Energy,
Power) we defined the scalar product of two
vectors. An important physical quantity, work,
is defined as a scalar product of two vector
quantities, force and displacement.

(a) (b)

Fig. 7.14 (a) Trajectories of two stars, S
1
 (dotted

line) and S
2
 (solid line) forming a

binary system with their centre of

mass C in uniform motion.

(b) The same binary system, with the

centre of mass C at rest.
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We shall now define another product of two
vectors. This product is a vector. Two important
quantities in the study of rotational motion,
namely, moment of a force and angular
momentum, are defined as vector products.

Definition of Vector Product

A vector product of two vectors a and b is a
vector c such that

(i) magnitude of c = c sinab θ=  where a and b

are magnitudes of  a and b and θ is the
angle between the two vectors.

(ii) c is perpendicular to the plane containing
a and b.

(iii) if we take a right handed screw with its head
lying in the plane of  a and b and the screw
perpendicular to this plane, and if we turn
the head in the direction from  a to b, then
the tip of the screw advances in the direction
of c. This right handed screw rule is
illustrated in Fig. 7.15a.
Alternately, if one curls up the fingers of

right hand around a line perpendicular to the
plane of the vectors  a and b and if the fingers
are curled up in the direction from a to b, then
the stretched thumb points in the direction of
c, as shown in Fig. 7.15b.

(a) (b)

Fig. 7.15 (a) Rule of the right handed screw for

defining the direction of the vector

product of two vectors.

                (b) Rule of the right hand for defining the

direction of the vector product.

A simpler version of the right hand rule is
the following : Open up your right hand palm
and curl the fingers pointing from  a to b. Your
stretched thumb points in the direction of c.

It should be remembered that there are two
angles between any two vectors  a and b . In
Fig. 7.15 (a) or (b) they correspond to θ (as

shown) and (3600– θ). While applying either of

the above rules, the rotation should be taken
through the smaller angle (<1800) between  a
and b. It is θ here.

Because of the cross (×) used to denote the
vector product, it is also referred to as cross product.

• Note that scalar product of two vectors is

commutative as said earlier, a.b = b.a
The vector product, however, is not

commutative, i.e. a × b ≠ b × a
The magnitude of both a × b and b × a is the

same ( sinab θ ); also, both of them are
perpendicular to the plane of  a and b. But the
rotation of the right-handed screw in case of
a × b  is from  a to b, whereas in case of  b × a it
is from b to a. This means the two vectors are
in opposite directions. We have

× = − ×a b b a

• Another interesting property of a vector

product is its behaviour under reflection.
Under reflection (i.e. on taking the plane
mirror image) we have

and ,x x y y z z→ − → − → − . As a result all

the components of a vector change sign and

thus ,a a→ − b b→ − . What happens to

a × b under reflection?

a × b ( ) ( )→ − × − = ×a b a b

Thus, a × b does not change sign under
reflection.

• Both scalar and vector products are

distributive with respect to vector addition.
Thus,

.( ) . .+ = +a b c a b a c

( )× + = × + ×a b c a b a c

• We may write c = a × b in the component

form. For this we first need to obtain some
elementary cross products:

(i) a × a = 0 (0 is a null vector, i.e. a vector
with zero magnitude)

This follows since magnitude of a × a  is

2 sin0 0a ° = .
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u

From this follow the results

 (i) ˆ ˆ ˆ ˆ ˆ ˆ, ,× = × = × =i i 0 j j 0 k k 0

(ii) ˆ ˆ ˆ× =i j k

Note that the magnitude of ˆ ˆ×i j  is sin900

or 1, since î  and ĵ  both have unit

magnitude and the angle between them is 900.

Thus, ˆ ˆ×i j  is a unit vector. A unit vector

perpendicular to the plane of î  and ĵ  and

related to them by the right hand screw rule is

k̂ . Hence, the above result. You may verify

similarly,

ˆ ˆ ˆ ˆ ˆ ˆand× = × =j k i k i j

From the rule for commutation of the cross
product, it follows:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,× = − × = − × = −j i k k j i i k j

Note if ˆ ˆ ˆ, ,i j k occur cyclically in the above

vector product relation, the vector product is

positive. If ˆ ˆ ˆ, ,i j k  do not occur in cyclic order,

the vector product is negative.
Now,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y za a a b b b× = + + × + +a b i j k i j k

ˆ ˆ ˆ ˆ ˆ ˆ
x y x z y x y z z x z ya b a b a b a b a b a b= − − + + −k j k i j i

= + +( )� ( )� ( ) �a b a b a b a b a b a by z z y z x x z x y y x− − −i j k

We have used the elementary cross products
in obtaining the above relation. The expression
for a × b  can be put in a determinant form
which is easy to remember.

ˆ ˆ ˆ

x y z

x y z

a a a

b b b

× =
i j k

a b

Example 7.4  Find the scalar and vector

products of two vectors. a = (3î  – 4ĵ  + 5k̂ )
and b = (– 2î  + ĵ  – 3k̂ )

Answer

ˆ ˆ ˆ ˆ ˆ ˆ(3 4 5 ) ( 2 3 )

6 4 15

25

= − + − + −
= − − −
= −

a b i j k i j ki i

ˆ ˆ ˆ

ˆ ˆ ˆ3 4 5 7 5

2 1 3

× = − = − −
− −

i j k

a b i j k

Note  ˆ ˆ ˆ7 5× = − + +b a i j k   t

7.6 ANGULAR VELOCITY AND ITS
RELATION WITH LINEAR VELOCITY

In this section we shall study what is angular
velocity and its role in rotational motion. We
have seen that every particle of a rotating body
moves in a circle. The linear velocity of the
particle is related to the angular velocity. The
relation between these two quantities involves
a vector product which we learnt about in the
last section.

Let us go back to Fig. 7.4. As said above, in
rotational motion of a rigid body about a fixed
axis, every particle of the body moves in a circle,

Fig. 7.16 Rotation about a fixed axis. (A particle (P)

of the rigid body rotating about the fixed

(z-) axis moves in a circle with centre (C)

on the axis.)

which lies in a plane perpendicular to the axis
and has its centre on the axis. In Fig. 7.16 we
redraw Fig. 7.4, showing a typical particle (at a
point P) of the rigid body rotating about a fixed
axis (taken as the z-axis). The particle describes
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a circle with a centre C on the axis. The radius
of the circle is r, the perpendicular distance of
the point P from the axis. We also show the
linear velocity vector v of the particle at P. It is
along the tangent at P to the circle.

Let P′ be the position of the particle after an
interval of time ∆t (Fig. 7.16). The angle PCP′
describes the angular displacement ∆θ of the
particle in time ∆t. The average angular velocity
of the particle over the interval  ∆t is ∆θ/∆t. As
∆t tends to zero (i.e. takes smaller and smaller
values), the ratio ∆θ/∆t approaches a limit which
is the instantaneous angular velocity dθ/dt of
the particle at the position P. We denote the
instantaneous angular velocity by  ω (the
Greek letter omega). We know from our study
of circular motion that the magnitude of linear
velocity  v of a particle moving in a circle is
related to the angular velocity of the particle ω
by the simple relation rυ ω= , where r is the
radius of the circle.

We observe that at any given instant the
relation  v rω=  applies to  all particles of the
rigid body. Thus for a particle at a perpendicular
distance r

i
  from the fixed axis, the linear velocity

at a given instant v
i
 is given by

i iv rω= (7.19)

The index i runs from 1 to n, where n is the
total number of particles of the body.

For particles on the axis, 0=r , and hence

v = ω r = 0. Thus, particles on the axis are
stationary. This verifies that the axis is fixed.

Note that we use the same angular velocity
ω for all the particles. We therefore, refer to  ωωωωω
as the angular velocity of the whole body.

We have characterised pure translation of

a body by all parts of the body having the same
velocity at any instant of time. Similarly, we

may characterise pure rotation by all parts of

the body having the same angular velocity at
any instant of time. Note that this

characterisation of the rotation of a rigid body

about a fixed axis is just another way of saying

as in Sec. 7.1 that each particle of the body moves

in a circle, which lies in a plane perpendicular

to the axis and has the centre on the axis.
In our discussion so far the angular velocity

appears to be a scalar. In fact, it is a vector. We
shall not justify this fact, but we shall accept
it. For rotation about a fixed axis, the angular
velocity vector lies along the axis of rotation,

and points out in the direction in which a right
handed screw would advance, if the head of the
screw is rotated with the body. (See Fig. 7.17a).

The magnitude of this vector is d dtω θ=
referred as above.

Fig. 7.17 (a) If the head of a right handed screw

rotates with the body, the screw

advances in the direction of the angular

velocity ωωωωω. If the sense (clockwise or

anticlockwise) of rotation of the body

changes, so does the direction of ωωωωω.

Fig. 7.17 (b) The angular velocity vector ωωωωω is

directed along the fixed axis as shown.

The linear velocity of the particle at P

is v = ωωωωω × r. It is  perpendicular to both

ω ω ω ω ω and r and is  directed along the

tangent to the circle described by the

particle.

We shall now look at what the vector product
ωωωωω × r corresponds to. Refer to Fig. 7.17(b) which
is a part of Fig. 7.16 reproduced to show the
path of the particle P. The figure shows the
vector ωωωωω directed along the fixed (z–) axis and

also the position vector  r = OP  of the particle

at P of the rigid body with respect to the origin
O. Note that the origin is chosen to be on the
axis of rotation.
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Now ωωωωω × r = ωωωωω × OP = ωωωωω × (OC + CP)

But ωωωωω × OC = 0 0 0 0 0 as ω ω ω ω ω is along OC

Hence ωωωωω × r = ωωωωω × CP

The vector ωωωωω × CP is perpendicular to ωωωωω, i.e.

to the z-axis and also to CP, the radius of the

circle described by the particle at P. It is

therefore, along the tangent to the circle at P.

Also, the magnitude of  ωωωωω × CP is ω (CP) since

ωωωωω and CP are perpendicular to each other. We

shall denote CP by ⊥r  and not by r, as we did

earlier.

Thus, ωωωωω × r is a vector of magnitude ωr⊥

and is along the tangent to the circle described
by the particle at P. The linear velocity vector v
at P has the same magnitude and direction.
Thus,

v = ω ω ω ω ω × r (7.20)

In fact, the relation, Eq. (7.20), holds good
even for rotation of a rigid body with one point
fixed, such as the rotation of the top [Fig. 7.6(a)].
In this case r represents the position vector of
the particle with respect to the fixed point taken
as the origin.

We note that for rotation about a fixed
axis, the direction of the vector ωωωωω does not
change with time. Its magnitude may,
however, change from instant to instant. For
the more general rotation, both the
magnitude and the direction of ω ω ω ω ω may change
from instant to instant.

7.6.1 Angular acceleration

You may have noticed that we are developing

the study of rotational motion along the lines

of the study of translational motion with which

we are already familiar. Analogous to the kinetic

variables of linear displacement (s) and velocity

(v) in translational motion, we have angular

displacement (θθθθθ) and angular velocity (ωωωωω) in

rotational motion. It is then natural to define

in rotational motion the concept of angular

acceleration in analogy with linear acceleration

defined as the time rate of change of velocity in

translational motion. We define angular

acceleration ααααα as the time rate of change of

angular velocity; Thus,

d

dt
=

ωωωω
αααα (7.21)

If the axis of rotation is fixed, the direction
of ω ω ω ω ω and hence, that of ααααα is fixed. In this case
the vector equation reduces to a scalar equation

d

dt

ωα = (7.22)

7.7  TORQUE AND ANGULAR MOMENTUM

In this section, we shall acquaint ourselves with
two physical quantities (torque and angular
momentum) which are defined as vector products
of two vectors. These as we shall see, are
especially important in the discussion of motion
of systems of particles, particularly rigid bodies.

7.7.1 Moment of force (Torque)

We have learnt that the motion of a rigid body,

in general, is a combination of rotation and

translation. If the body is fixed at a point or along

a line, it has only rotational motion. We know

that force is needed to change the translational

state of a body, i.e. to produce linear

acceleration. We may then ask, what is the

analogue of force in the case of rotational

motion? To look into the question in a concrete

situation let us take the example of opening or

closing of a door. A door is a rigid body which

can rotate about a fixed vertical axis passing

through the hinges. What makes the door

rotate? It is clear that unless a force is applied

the door does not rotate. But any force does not

do the job. A force applied to the hinge line

cannot produce any rotation at all, whereas a

force of given magnitude applied at right angles

to the door at its outer edge is most effective in

producing rotation. It is not the force alone, but

how and where the force is applied is important

in rotational motion.

The rotational analogue of force in linear

motion is moment of force. It is also referred to

as torque or couple. (We shall use the words

moment of force and torque interchangeably.)

We shall first define the moment of force for the

special case of a single particle. Later on we

shall extend the concept to systems of particles

including rigid bodies. We shall also relate it to

a change in the state of rotational motion, i.e. is

angular acceleration of a rigid body.
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Fig. 7.18 τ = τ = τ = τ = τ = r × F, τ τ τ τ τ is perpendicular to the plane

containing r and F, and its direction is

given by the right handed screw rule.

If a force acts on a single particle at a point
P whose position with respect to the origin O is
given by the position vector r (Fig. 7.18), the
moment of the force acting on the particle with
respect to the origin O is defined as the vector
product

τττττ = r × F (7.23)
The moment of force (or torque) is a vector

quantity. The symbol τ τ τ τ τ stands for the Greek
letter tau. The magnitude of τ τ τ τ τ is

τ = r F sinθ (7.24a)
where r is the magnitude of the position vector
r, i.e. the length OP, F is the magnitude of force
F and θ     is the angle between r and F as
shown.

Moment of force has dimensions M L2 T -2.
Its dimensions are the same as those of work
or energy. It is, however, a very different physical
quantity than work. Moment of a force is a
vector, while work is a scalar. The SI unit of
moment of force is newton metre (N m). The
magnitude of the moment of force may be
written

( sin )r F r Fτ θ ⊥= = (7.24b)

or sinr F rFτ θ ⊥= = (7.24c)

where r⊥  = r sinθ is the perpendicular distance

of the line of action of F from the origin and
( sin )F F θ⊥ = is the component of F in the

direction perpendicular to r. Note that τ = 0 if
r = 0, F = 0 or θ = 00 or 1800 . Thus, the moment
of a force vanishes if either the magnitude of
the force is zero, or if the line of action of the
force passes through the origin.

One may note that since  r × F is a vector
product, properties of a vector product of two
vectors apply to it. If the direction of F is
reversed, the direction of the moment of force
is reversed. If directions of both r and F are
reversed, the direction of the moment of force
remains the same.

7.7.2 Angular momentum of a particle

Just as the moment of a force is the rotational
analogue of force in linear motion, the quantity
angular momentum is the rotational analogue
of linear momentum. We shall first define
angular momentum for the special case of a
single particle and look at its usefulness in the
context of single particle motion. We shall then
extend the definition of angular momentum to
systems of particles including rigid bodies.

Like moment of a force, angular momentum
is also a vector product. It could also be referred
to as moment of (linear) momentum. From this
term one could guess how angular momentum
is defined.

Consider a particle of mass m and linear
momentum p at a position r relative to the origin
O. The angular momentum l of the particle with
respect to the origin O is defined to be

l = r × p (7.25a)
The magnitude of the angular momentum

vector is

sinl r p= θ (7.26a)

where p is the magnitude of p and θ is the angle
between r and p. We may write

l r p⊥=  or r p⊥                                   (7.26b)

where r⊥  (= r sinθ) is the perpendicular distance

of the directional line of  p from the origin and

( sin )p p θ⊥ =  is the component of p in a direction

perpendicular to r. We expect the angular
momentum to be zero (l = 0), if the linear
momentum vanishes (p = 0), if the particle is at
the origin (r = 0), or if the directional line of  p
passes through the origin θ = 00 or 1800.
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The physical quantities, moment of a force
and angular momentum, have an important
relation between them. It is the rotational
analogue of the relation between force and linear
momentum. For deriving the relation in the
context of a single particle, we differentiate
l = r × p with respect to time,

d d
( )

d dt t
= ×

l
r p

Applying the product rule for differentiation
to the right hand side,

d d d
( )

d d dt t t
× = × + ×

r p
r p p r

Now, the velocity of the particle is v = dr/dt

and p = m v

Because of this 
d

0,
d

m
t

× = × =
r

p v v

as the vector product of two parallel vectors
vanishes. Further, since dp / dt = F,

r
p

r F× = × =
d

dt
ττ

Hence 
d

dt
( )r p× = ττ

or  
d

d

l

t
= ττ (7.27)

Thus, the time rate of change of the angular
momentum of a particle is equal to the torque
acting on it. This is the rotational analogue of
the equation F = dp/dt, which expresses
Newton’s second law for the translational motion
of a single particle.

Torque and angular momentum for a system
of particles

To get the total angular momentum of a system
of particles about a given point we need to add
vectorially the angular momenta of individual
particles. Thus, for a system of n particles,

L l l l l= + + + =
=
∑1 2

1

... n i

i

n

The angular momentum of the ith   particle
is given by

l
i
 = r

i
 × p

i

where r
i
 is the position vector of the ith particle

with respect to a given origin and p = (m
i
v

i
) is

the linear momentum of the particle. (The

particle has mass m
i
 and velocity v

i
) We may

write the total angular momentum of a system
of particles as

L l r p= = ×∑ ∑i i i

i
(7.25b)

This is a generalisation of the definition of
angular momentum (Eq. 7.25a) for a single
particle to a system of particles.

Using Eqs. (7.23) and (7.25b), we get

d

d

d

d

d

d

L
l

l

t t t
i

i

i

i

i

= ( ) = =∑ ∑ ∑ ττ (7.28a)

An experiment with the bicycle rim

Take a
bicycle rim
and extend
its axle on
both sides.
Tie two
s t r i n g s
at both ends
A and B,
as shown
in the
a d j o i n i n g
figure.  Hold
both the
s t r i n g s
together in

one hand such that the rim is vertical. If you
leave one string, the rim will tilt. Now keeping
the rim in vertical position with both the strings
in one hand, put the wheel in fast rotation
around the axle with the other hand. Then leave
one string, say B, from your hand, and observe
what happens.

The rim keeps rotating in a vertical plane
and the plane of rotation turns around the
string A which you are holding. We say that the
axis of rotation of the rim or equivalently
its angular momentum precesses about the
string A.

The rotating rim gives rise to an angular
momentum. Determine the direction of this
angular momentum. When you are holding the
rotating rim with string A, a torque is generated.
(We leave it to you to find out how the torque is
generated and what its direction is.) The effect
of the torque on the angular momentum is to
make it precess around an axis perpendicular
to both the angular momentum and the torque.
Verify all these statements.

Initially After
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u

u

where τττττ
i 
is the torque acting on the ith particle;

ττi i i= ×r F

The force F
i 
on the ith particle is the vector

sum of external forces Fi
ext  acting on the particle

and the internal forces int
iF  exerted on it by the

other particles of the system. We may therefore
separate the contribution of the external and
the internal forces to the total torque

ττ ττ= = ×∑ ∑i

i

i

i

ir F  as

ττ ττ ττ= +ext int ,

where   ττext i i
ext

i

= ×∑ r F

and ττint
int= ×∑ r Fi i

i

We shall assume not only Newton’s third law

of motion, i.e. the forces between any two particles

of the system are equal and opposite, but also that

these forces are directed along the line joining the

two particles. In this case the contribution of the

internal forces to the total torque on the system is

zero, since the torque resulting from each action-

reaction pair of forces is zero. We thus have, τττττ
int

 =

0 and therefore τττττ
 
 = τ τ τ τ τ

ext
.

Since ττ ττ= ∑ i , it follows from Eq. (7.28a)

that

d

d

L

t
ext= ττ (7.28 b)

Thus, the time rate of the total angular

momentum of a system of particles about a

point (taken as the origin of our frame of

reference) is equal to the sum of the external

torques (i.e. the torques due to external forces)

acting on the system taken about the same

point. Eq. (7.28 b) is the generalisation of the

single particle case of Eq. (7.23) to a system of

particles. Note that when we have only one

particle, there are no internal forces or torques.

Eq.(7.28 b) is the rotational analogue of

d

d

P
F

t
ext= (7.17)

Note that like Eq.(7.17), Eq.(7.28b) holds

good for any system of particles, whether it is a

rigid body or its individual particles have all

kinds of internal motion.

Conservation of angular momentum

If τττττ
ext 

= 0, Eq. (7.28b) reduces to

d
0

dt
=

L

or         L = constant. (7.29a)
Thus, if the total external torque on a system

of particles is zero, then the total angular
momentum of the system is conserved, i.e.
remains constant. Eq. (7.29a) is equivalent to
three scalar equations,

L
x
 = K

1
, L

y
 = K

2
 and L

z
 = K

3
(7.29 b)

Here K
1
, K

2
 and K

3
 are constants; L

x
, L

y
 and

L
z
 are the components of the total angular

momentum vector L along the x,y and z axes
respectively. The statement that the total
angular momentum is conserved means that
each of these three components is conserved.

Eq. (7.29a) is the rotational analogue of
Eq. (7.18a), i.e. the conservation law of the total
linear momentum for a system of  particles.
Like Eq. (7.18a), it has applications in many
practical situations. We shall look at a few of
the interesting applications later on in this
chapter.

Example 7.5  Find the torque of a force
7î  + 3ĵ  – 5k̂  about the origin. The force
acts on a particle whose position vector is
î  – ĵ  + k̂ .

Answer  Here ˆ ˆ ˆ= − +r i j k

    and ˆ ˆ ˆ7 3 5= + −F i j k .

We shall use the determinant rule to find the

torque ττ = ×r F

or ττ = + +2 12 10ˆ ˆ ˆi j k t

Example 7.6  Show that the angular
momentum about any point of a single
particle moving with constant velocity
remains constant throughout the motion.
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Answer Let the particle with velocity v  be at
point P  at some instant t. We want to calculate
the angular momentum of the particle about an
arbitrary point O.

Fig 7.19

The angular momentum is l = r × mv. Its
magnitude is mvr sinθ, where θ is the angle
between r and v as shown in Fig. 7.19. Although
the particle changes position with time, the line
of direction of v remains the same and hence
OM = r sin θ. is a constant.

Further, the direction of l is perpendicular
to the plane of r and v. It is into the page of the
figure.This direction does not change with time.

Thus, l remains the same in magnitude and
direction and is therefore conserved. Is there
any external torque on the particle? t

7.8  EQUILIBRIUM OF A RIGID BODY

We are now going to concentrate on the motion
of rigid bodies rather than on the motion of
general systems of particles.

We shall recapitulate what effect the
external forces have on a rigid body. (Henceforth
we shall omit the adjective ‘external’ because
unless stated otherwise, we shall deal with only
external forces and torques.) The forces change
the translational state of the motion of the rigid
body, i.e. they change its total linear momentum
in accordance with Eq. (7.17). But this is not
the only effect the forces have. The total torque
on the body may not vanish. Such a torque
changes the rotational state of motion of the
rigid body, i.e. it changes the total angular
momentum of the body in accordance with Eq.
(7.28 b).

A rigid body is said to be in mechanical
equilibrium, if both its linear momentum and
angular momentum are not changing with time,
or equivalently, the body has neither linear

acceleration nor angular acceleration. This
means
(1) the total force, i.e. the vector sum of the

forces, on the rigid body is zero;

F F F F1 2

1

+ + + = =
=
∑... n i

i

n

0 (7.30a)

If the total force on the body is zero, then
the total linear momentum of the body does
not change with time. Eq. (7.30a) gives the
condition for the translational equilibrium
of the body.

(2) The total torque, i.e. the vector sum of the
torques on the rigid body is zero,

ττ ττ ττ ττ1 2

1

+ + + = =
=
∑... n i

i

n

0 (7.30b)

If the total torque on the rigid body is zero,

the total angular momentum of the body does

not change with time. Eq. (7.30 b) gives the

condition for the rotational equilibrium of the

body.

One may raise a question, whether the

rotational equilibrium condition [Eq. 7.30(b)]

remains valid, if the origin with respect to which

the torques are taken is shifted. One can show

that if the translational equilibrium condition

[Eq. 7.30(a)] holds for a rigid body, then such a

shift of origin does not matter, i.e. the rotational

equilibrium condition is independent of the

location of the origin about which the torques

are taken. Example 7.7 gives a proof of this

result in a special case of a couple, i.e. two forces

acting on a rigid body in translational

equilibrium. The generalisation of this result to

n forces is left as an exercise.

Eq. (7.30a) and Eq. (7.30b), both, are vector

equations. They are equivalent to three scalar

equations each. Eq. (7.30a) corresponds to

Fix

i

n

=
=
∑ 0

1
, Fiy

i

n

=
=
∑ 0

1
 and Fiz

i

n

=
=
∑ 0

1
  (7.31a)

where F
ix
, F

iy
 and F

iz
 are respectively the x, y

and z components of the forces F
i
. Similarly,

Eq. (7.30b) is equivalent to three scalar
equations

τix

i

n

=
=
∑ 0

1
, τiy

i

n

=
=
∑ 0

1
 and τiz

i

n

=
=
∑ 0

1
  (7.31b)

where τ
ix
, τ

iy
  and  τ

iz 
are respectively the x, y and

z components of the torque τττττ
i
 .
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Eq. (7.31a) and (7.31b) give six independent
conditions to be satisfied for mechanical
equilibrium of a rigid body. In a number of
problems all the forces acting on the body are
coplanar. Then we need only three conditions
to be satisfied for mechanical equilibrium. Two
of these conditions correspond to translational
equilibrium; the sum of the components of the
forces along any two perpendicular axes in the
plane must be zero. The third condition
corresponds to rotational equilibrium. The sum
of the components of the torques along any axis
perpendicular to the plane of the forces must
be zero.

The conditions of equilibrium of a rigid body
may be compared with those for a particle,
which we considered in earlier chapters. Since
consideration of rotational motion does not
apply to a particle, only the conditions for
translational equilibrium (Eq. 7.30 a) apply to
a particle. Thus, for equilibrium of a particle
the vector sum of all the forces on it must be
zero. Since all these forces act on the single
particle, they must be concurrent. Equilibrium
under concurrent forces was discussed in the
earlier chapters.

A body may be in partial equilibrium, i.e., it
may be in translational equilibrium and not in
rotational equilibrium, or it may be in rotational
equilibrium and not in translational
equilibrium.

Consider a light (i.e. of negligible mass) rod
(AB) as shown in Fig. 7.20(a). At the two ends (A
and B) of which two parallel forces, both  equal
in magnitude and acting along same direction
are applied perpendicular to the rod.

Fig. 7.20 (a)

Let C be the midpoint of AB, CA = CB = a.
the moment of the forces at A and B will both
be equal in magnitude (aF ), but opposite in
sense as shown. The net moment on the rod will
be zero. The system will be in rotational
equilibrium, but it will not be in translational

equilibrium; F 0≠∑

Fig. 7.20 (b)

The force at B in Fig. 7.20(a) is reversed in
Fig. 7.20(b). Thus, we have the same rod with
two forces of equal magnitude but acting in
opposite diretions applied perpendicular to the
rod, one at end A and the other at end B. Here
the moments of both the forces are equal, but
they are not opposite; they act in the same sense
and cause anticlockwise rotation of the rod.  The
total force on the body is zero; so the body is in
translational equilibrium; but it is not in
rotational equilibrium. Although the rod is not
fixed in any way, it undergoes pure rotation (i.e.
rotation without translation).

A pair of forces of equal magnitude but acting
in opposite directions with different lines of
action is known as a couple or torque. A couple
produces rotation without translation.

When we open the lid of a bottle by turning
it, our fingers are applying a couple to the lid
[Fig. 7.21(a)]. Another known example is a
compass needle in the earth’s magnetic field as
shown in the Fig. 7.21(b). The earth’s magnetic
field exerts equal forces on the north and south
poles. The force on the North Pole is towards
the north, and the force on the South Pole is
toward the south. Except when the needle points
in the north-south direction; the two forces do
not have the same line of action. Thus there is
a couple acting on the needle due to the earth’s
magnetic field.

Fig. 7.21(a) Our fingers apply a couple to turn

the lid.
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Fig. 7.21(b) The Earth’s magnetic field exerts equal

and opposite forces on the poles of a

compass needle. These two  forces form

a couple.

Example 7.7  Show that moment of a
couple does not depend on the point about
which you take the moments.

Answer

Fig. 7.22

Consider a couple as shown in Fig. 7.22
acting on a rigid body. The forces F and -F act
respectively at points B and A. These points have
position vectors r

1
 and r

2
 with respect to origin

O. Let us take the moments of the forces about
the origin.

The moment of the couple = sum of the
moments of the two forces making the couple

= r
1 
× (–F) + r

2 
× F

= r
2 
× F – r

1 
× F

= (r
2
–r

1
)
 
× F

But r
1
 + AB = r

2
, and hence AB = r

2
 – r

1
.

The moment of the couple, therefore, is
AB

 
× F.
Clearly this is independent of the origin, the

point about which we took the moments of the
forces. t

7.8.1 Principle of moments

An ideal lever is essentially a light (i.e. of
negligible mass) rod pivoted at a point along its

length. This point is called the fulcrum. A see-
saw on the children’s playground is a typical
example of a lever. Two forces F

1
 and F

2
, parallel

to each other and usually perpendicular to the
lever, as shown here, act on the lever at
distances d

1
 and d

2
 respectively from the

fulcrum as shown in Fig. 7.23.

Fig. 7.23

The lever is a system in mechanical
equilibrium. Let R be the reaction of the support
at the fulcrum; R is directed opposite to the
forces  F

1
 and F

2
. For translational equilibrium,

R – F
1 
– F

2
 = 0 (i)

For considering rotational equilibrium we
take the moments about the fulcrum; the sum
of moments must be zero,

d
1
F

1 
– d

2
F

2
 = 0 (ii)

Normally the anticlockwise (clockwise)
moments are taken to be positive (negative). Note
R acts at the fulcrum itself and has zero moment
about the fulcrum.

In the case of the lever force F
1 
is usually

some weight to be lifted. It is called the load

and its distance from the fulcrum d
1
 is called

the load arm. Force F
2
 is the effort applied to lift

the load; distance d
2
 of the effort from the

fulcrum is the effort arm.

Eq. (ii) can be written as
d

1
F

1 
=

 
d

2 
F

2
(7.32a)

or load arm
 
× load = effort arm

 
× effort

The above equation expresses the principle
of moments for a lever. Incidentally the ratio
F

1
/F

2 
is called the Mechanical Advantage (M.A.);

M.A. =
1 2

2 1

F d

F d
= (7.32b)

If the effort arm d
2 
is larger than the load

arm, the mechanical advantage is greater than
one. Mechanical advantage greater than one
means that a small effort can be used to lift a
large load. There are several examples of a lever
around you besides the see-saw. The beam of a
balance is a lever. Try to find more such
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examples and identify the fulcrum, the effort and
effort arm, and the load and the load arm of the
lever in each case.

You may easily show that the principle of
moment holds even when the parallel forces  F

1

and F
2 
are not perpendicular, but act at some

angle, to the lever.

7.8.2 Centre of gravity

Many of you may have the experience of
balancing your notebook on the tip of a finger.
Figure 7.24 illustrates a similar experiment that
you can easily perform. Take an irregular-
shaped cardboard having mass M and a narrow
tipped object like a pencil. You can locate by trial
and error a point G on the cardboard where it
can be balanced on the tip of the pencil. (The
cardboard remains horizontal in this position.)
This point of balance is the centre of gravity (CG)
of the cardboard. The tip of the pencil provides
a vertically upward force due to which the
cardboard is in mechanical equilibrium. As
shown in the Fig. 7.24, the reaction of the tip is
equal and opposite to Mg and hence the
cardboard is in translational equilibrium. It is
also in rotational equilibrium; if it were not so,
due to the unbalanced torque it would tilt and
fall. There are torques on the card board due to
the forces of gravity like m

1
g, m

2
g ….  etc, acting

on the individual particles that make up the
cardboard.

Fig. 7.24 Balancing a cardboard on the tip of a

pencil. The point of support, G, is the

centre of gravity.

The CG of the cardboard is so located that
the total torque on it due to the forces m

1
g, m

2
g

….  etc. is zero.
If  r

i
 is the position vector of the ith particle

of an extended body with respect to its CG, then
the torque about the CG, due to the force of
gravity on the particle  is τττττ

i 
= r

i
 × m

i 
g. The total

gravitational torque about the CG is zero, i.e.

ττ ττg i i im= = × =∑ ∑ r g 0 (7.33)

We may therefore, define the CG of a body
as that point where the total gravitational torque
on the body is zero.

We notice that in Eq. (7.33), g is the same
for all particles, and hence it comes out of the
summation. This gives, since g is non-zero,

∑m i ir  = 0. Remember that the position vectors

(r
i
) are taken with respect to the CG. Now, in

accordance with the reasoning given below
Eq. (7.4a) in Sec. 7.2, if the sum is zero, the origin
must be the centre of mass of the body. Thus,
the centre of gravity of the body coincides with
the centre of mass in uniform gravity or gravity-
free space. We note that this is true because
the body being small,  g does not

Fig. 7.25 Determining the centre of gravity of a body

of irregular shape. The centre of gravity G

lies on the vertical AA
1
 through the point

of suspension of the body A.
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vary from one point of the body to the other. If
the body is so extended that g varies from part
to part of the body, then the centre of gravity
and centre of mass will not coincide. Basically,
the two are different concepts. The centre of
mass has nothing to do with gravity. It depends
only on the distribution of mass of the body.

In Sec. 7.2 we found out the position of the
centre of mass of several regular, homogeneous
objects. Obviously the method used there gives
us also the centre of gravity of these bodies, if
they are small enough.

Figure 7.25 illustrates another way of
determining the CG of an irregular shaped body
like a cardboard. If you suspend the body from
some point like A, the vertical line through A
passes through the CG. We mark the vertical
AA

1
. We then suspend the body through other

points like B and C. The intersection of the
verticals gives the CG. Explain why the method
works. Since the body is small enough, the
method allows us to determine also its centre
of mass.

Example 7.8   A metal bar 70 cm long
and 4.00 kg in mass supported on two
knife-edges placed 10 cm from each end.
A 6.00 kg load is suspended at 30 cm from
one end. Find the reactions at the knife-
edges. (Assume the bar to be of uniform
cross section and homogeneous.)

Answer

Fig. 7.26

Figure 7.26 shows the rod AB, the positions
of the knife edges K

1
 and K

2
 , the centre of

gravity of the rod at G and the suspended load
at P.

Note the weight of the rod W acts at its
centre of gravity G. The rod is uniform in cross
section and homogeneous; hence G is at the
centre of the rod; AB = 70 cm. AG = 35 cm, AP
= 30 cm, PG = 5 cm, AK

1
= BK

2 
= 10 cm and K

1
G

= K
2
G = 25 cm. Also, W= weight of the rod =

4.00 kg and W
1
= suspended load = 6.00 kg;

R
1
 and R

2
 are the normal reactions of the

support at the knife edges.
For translational equilibrium of the rod,
R

1
+R

2 
–W

1 
–W = 0 (i)

Note W
1
 and W act vertically down and R

1

and R
2 
act vertically up.

For considering rotational equilibrium, we
take moments of the forces. A convenient point
to take moments about is G. The moments of
R

2
 and W

1
 are anticlockwise (+ve), whereas the

moment of R
1
 is clockwise (-ve).

For rotational equilibrium,
–R

1 
(K

1
G) + W

1 
(PG) + R

2 
(K

2
G) = 0 (ii)

It is given that W = 4.00g N and W
1
 = 6.00g

N, where g = acceleration due to gravity. We
take g = 9.8 m/s2.

With numerical values inserted, from (i)

R
1 
+ R

2
 – 4.00g – 6.00g = 0

or R
1 
+ R

2
 = 10.00g  N (iii)

               = 98.00 N
From (ii), – 0.25 R

1
 + 0.05 W

1
 + 0.25 R

2 
= 0

or R
1
 – R

2
 = 1.2g  N = 11.76 N (iv)

From (iii) and (iv), R
1
 = 54.88 N,

R
2
 = 43.12 N

Thus the reactions of the support are about
55 N at K

1 
and 43 N at K

2
.   t

Example 7.9  A 3m long ladder weighing
20 kg leans on a frictionless wall. Its feet
rest on the floor 1 m from the wall as shown
in Fig.7.27. Find the reaction forces of the
wall and the floor.

Answer

Fig. 7.27

The ladder AB is 3 m long, its foot A is at
distance AC = 1 m from the wall. From
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Pythagoras theorem, BC = 2 2  m. The forces

on the ladder are its weight W acting at its centre
of gravity D, reaction forces F

1 
and F

2 
of the wall

and the floor respectively. Force F
1
 is

perpendicular to the wall, since the wall is
frictionless. Force F

2
  is resolved into two

components, the normal reaction N and the
force of friction F. Note that F prevents the ladder
from sliding away from the wall and is therefore
directed toward the wall.

For translational equilibrium, taking the
forces in the vertical direction,

N – W = 0 (i)

Taking the forces in the horizontal direction,

F – F
1
 = 0 (ii)

For rotational equilibrium, taking the
moments of the forces about A,

12 2 F − (1/2) W = 0 (iii)

Now W = 20 g = 20 × 9.8 N = 196.0 N

From (i) N = 196.0 N

From (iii)
1 4 2 196.0/4 2 34.6 NF W= = =

From (ii) 1 34.6 NF F= =

               2 2
2 199.0F F N= + = N

The force F
2
 makes an angle α with the

horizontal,

1tan 4 2 , tan (4 2) 80N Fα α −= = = ≈ �    t

7.9  MOMENT OF INERTIA

We have already mentioned that we are

developing the study of rotational motion

parallel to the study of translational motion with

which we are familiar. We have yet to answer

one major question in this connection. What is

the analogue of mass in rotational motion?

We shall attempt to answer this question in the

present section. To keep the discussion simple,

we shall consider rotation about a fixed axis

only. Let us try to get an expression for the

kinetic energy of a rotating body. We know

that for a body rotating about a fixed axis, each

particle of the body moves in a circle with linear

velocity given by Eq. (7.19). (Refer to Fig. 7.16).

For a particle at a distance from the axis, the

linear velocity is i irυ ω= . The kinetic energy of

motion of this particle is

2 2 21 1

2 2
i i i i ik m m rυ ω= =

where m
i 
is the mass of the particle. The total

kinetic energy K of the body is then given by
the sum of the kinetic energies of individual
particles,

2 2

1 1

1
( )

2

n n

i i i

i i

K k m r ω
= =

= =∑ ∑

Here n is the number of particles in the body.
Note ω is the same for all particles. Hence, taking
ω out of the sum,

2 2

1

1
( )

2

n

i i

i

K m rω
=

= ∑

We define a new parameter characterising
the rigid body, called the moment of inertia I ,
given by

2

1

n

i i

i

I m r
=

=∑ (7.34)

With this definition,

21

2
K Iω= (7.35)

Note that the parameter I is independent of
the magnitude of the angular velocity. It is a
characteristic of the rigid body and the axis
about which it rotates.

Compare Eq. (7.35) for the kinetic energy of
a rotating body with the expression for the
kinetic energy of a body in linear (translational)
motion,

21

2
K m υ=

Here, m is the mass of the body and v is its
velocity. We have already noted the analogy
between angular velocity ω (in respect of rotational
motion about a fixed axis) and linear velocity v (in
respect of linear motion). It is then evident that
the parameter, moment of inertia I, is the desired
rotational analogue of mass in linear motion. In
rotation (about a fixed axis), the moment of inertia
plays a similar role as mass does in linear motion.

We now apply the definition Eq. (7.34), to
calculate the moment of inertia in two simple
cases.
(a) Consider a thin ring of radius R and mass

M, rotating in its own plane around its centre
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with angular velocity ω. Each mass element
of the ring is at a distance R from the axis,
and moves with a speed Rω.  The kinetic
energy is therefore,

2 2 21 1

2 2
K M MRυ ω= =

Comparing with Eq. (7.35) we get I = MR 2

for the ring.

Fig. 7.28 A light rod of length l with a pair of masses

rotating about an axis through the centre of

mass of the system and perpendicular to

the rod. The total mass of the system is M.

(b) Next, take a rigid rod of negligible mass of
length of length l with a pair of small masses,
rotating about an axis through the centre of
mass perpendicular to the rod (Fig. 7.28).
Each mass M/2 is at a distance l/2 from the
axis. The moment of inertia of the masses is
therefore given by

(M/2) (l/2)2 + (M/2)(l/2)2

Thus, for the pair of masses, rotating about
the axis through the centre of mass
perpendicular to the rod

I = Ml2 / 4
Table 7.1 simply gives the moment of inertia of
various familiar regular shaped bodies about
specific axes. (The derivations of these
expressions are beyond the scope of this textbook
and you will study them in higher classes.)

As the mass of a body resists a change in its
state of linear motion, it is a measure of its inertia
in linear motion. Similarly, as the moment of
inertia about a given axis of rotation resists a
change in its rotational motion, it can be
regarded as a measure of rotational inertia of
the body; it is a measure of the way in which
different parts of the body are distributed at
different distances from the axis. Unlike the
mass of a body, the moment of inertia is not a
fixed quantity but depends on distribution of
mass about the axis of rotation, and the
orientation and position of the axis of rotation

with respect to the body as a whole. As a

measure of the way in which the mass of a

rotating rigid body is distributed with respect to

the axis of rotation, we can define a new

parameter, the radius of gyration. It is related

to the moment of inertia and the total mass of

the body.

Notice from the Table 7.1 that in all

cases, we can write I = Mk2, where k has

the dimension of length. For a rod, about

the perpendicular axis at its midpoint,

i.e.
2 2 12,k L=  = 12k L . Similarly, k = R/2

for the circular disc about its diameter. The

length k is a geometric property of the body and

axis of rotation. It is called the radius of

gyration. The radius of gyration of a body

about an axis may be defined as the distance

from the axis of a mass point whose mass is

equal to the mass of the whole body and whose

moment of inertia is equal to the moment of

inertia of the body about the axis.

Thus, the moment of inertia of a rigid body

depends on the mass of the body, its shape and

size; distribution of mass about the axis of

rotation, and the position and orientation of the

axis of rotation.

From the definition, Eq. (7.34), we can infer

that the dimensions of moments of inertia are

ML2 and its SI units are kg m2.

The property of this extremely important

quantity I, as a measure of rotational inertia of

the body, has been put to a great practical use.

The machines, such as steam engine and the

automobile engine, etc., that produce rotational

motion have a disc with a large moment of

inertia, called a flywheel. Because of its large

moment of inertia, the flywheel resists the

sudden increase or decrease of the speed of the

vehicle. It allows a gradual change in the speed

and prevents jerky motions, thereby ensuring

a smooth ride for the passengers on the vehicle.

7.10 THEOREMS OF PERPENDICULAR AND
PARALLEL AXES

These are two useful theorems relating to
moment of inertia. We shall first discuss the
theorem of perpendicular axes and its simple
yet instructive application in working out the
moments of inertia of some regular-shaped
bodies.
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Table 7.1 Moments of inertia of some regular shaped bodies about specific axes

Z Body Axis Figure I

(1) Thin circular Perpendicular to M R 2

ring, radius R plane, at centre

(2) Thin circular Diameter M R2/2

ring, radius R

(3) Thin rod, Perpendicular to M L2/12

length  L rod, at mid point

(4) Circular disc, Perpendicular to M R2/2

radius R disc at centre

(5) Circular disc, Diameter M R2/4

radius R

(6) Hollow cylinder, Axis of cylinder M R2

radius R

(7) Solid cylinder, Axis of cylinder M R2/2

radius R

(8) Solid sphere, Diameter 2 M R2/5

radius R

Theorem of perpendicular axes

This theorem is applicable to bodies which are
planar. In practice this means the theorem

applies to flat bodies whose thickness is very

small compared to their other dimensions (e.g.

length, breadth or radius). Fig. 7.29 illustrates

the theorem. It states that the moment of
inertia of a planar body (lamina) about an axis
perpendicular to its plane is equal to the sum
of its moments of inertia about two
perpendicular axes concurrent with
perpendicular axis and lying in the plane of
the body.
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Fig. 7.29 Theorem of perpendicular axes

applicable to a planar body; x and y axes

are two perpendicular axes in the plane

and the z-axis is perpendicular to the

plane.

The figure shows a planar body. An axis
perpendicular to the body through a point O is
taken as the z-axis. Two mutually perpendicular
axes lying in the plane of the body and
concurrent with z-axis, i.e., passing through O,
are taken as the x and y-axes. The theorem
states that

z x yI I I= + (7.36)

Let us look at the usefulness of the theorem
through an example.

Example 7.10  What is the moment of
inertia of a disc about one of its diameters?

Fig. 7.30 Moment of inertia of a disc about a

diameter, given its moment of inertia about

the perpendicular axis through its centre.

Answer  We assume the moment of inertia of
the disc about an axis perpendicular to it and
through its centre to be known; it is MR2/2,
where M is the mass of the disc and R is its
radius (Table 7.1)

The disc can be considered to be a planar
body. Hence the theorem of perpendicular axes
is applicable to it. As shown in Fig. 7.30, we
take three concurrent axes through the centre
of the disc, O, as the x–, y– and z–axes; x– and
y–axes lie in the plane of the disc and z–axis is
perpendicular to it. By the theorem of
perpendicular axes,

z x yI I I= +

Now, x and y axes are along two diameters
of the disc, and by symmetry the moment of
inertia of the disc is the same about any
diameter. Hence

I
x 
=

 
I
y

and I
z
 = 2I

x

But I
z
 = MR2/2

So finally, I
x
 = I

z
/2 = MR2/4

Thus the moment of inertia of a disc about
any of its diameter is MR2/4 .   t

Find similarly the moment of inertia of a
ring about any of its diameters. Will the theorem
be applicable to a solid cylinder?

Fig.7.31 The theorem of parallel axes The z and z′
axes are two parallel axes separated  by a

distance a; O is the centre of mass of the

body, OO’ = a.
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7.10.1 Theorem of parallel axes

This theorem is applicable to a body of any
shape. It allows to find the moment of inertia of
a body about any axis, given the moment of
inertia of the body about a parallel axis through
the centre of mass of the body. We shall only
state this theorem and not give its proof. We
shall, however, apply it to a few simple situations
which will be enough to convince us about the
usefulness of the theorem. The theorem may
be stated as follows:

The moment of inertia of a body about any
axis is equal to the sum of the moment of
inertia of the body about a parallel axis passing
through its centre of mass and the product of
its mass and the square of the distance
between the two parallel axes. As shown in
the Fig. 7.31, z and z′ are two parallel axes,
separated by a distance a. The z-axis passes
through the centre of mass O of the rigid body.
Then according to the theorem of parallel axes

I
z′

 = I
z 
+ Ma2 (7.37)

where I
z
  and  I

z′ are the moments of inertia of the
body about the z and z′ axes respectively, M is the
total mass of the body and a is the perpendicular
distance between the two parallel axes.

Example 7.11  What is the moment of
inertia of a rod of mass M, length l about
an axis perpendicular to it through one
end?

Answer    For the rod of mass M and length l,
I = Ml2/12. Using the parallel axes theorem,
I′ = I + Ma2 with  a = l/2  we get,

22 2

12 2 3

l l Ml
I M M

 ′ = + = 
 

We can check this independently since I is
half the moment of inertia of a rod of mass 2M

and length 2l about its midpoint,

2 24 1
2 .

12 2 3

l Ml
I M′ = × = t

Example 7.12 What is the moment of
inertia of a ring about a tangent to the
circle of the ring?

Answer
The tangent to the ring in the plane of the ring
is parallel to one of the diameters of the ring.

The distance between these two parallel axes is
R, the radius of the ring. Using the parallel axes
theorem,

Fig. 7.32

I I MR
MR

MR MRdiatangent = + = + =2
2

2 2

2

3

2
.   t

7.11 KINEMATICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

We have already indicated the analogy between
rotational motion and translational motion. For

example, the angular velocity ωωωωω plays the same
role in rotation as the linear velocity v in
translation. We wish to take this analogy

further. In doing so we shall restrict the
discussion only to rotation about fixed axis. This

case of motion involves only one degree of
freedom, i.e., needs only one independent
variable to describe the motion. This in

translation corresponds to linear motion. This
section is limited only to kinematics. We shall

turn to dynamics in later sections.

We recall that for specifying the angular
displacement of the rotating body we take any
particle like P (Fig.7.33) of the body. Its angular
displacement θ in the plane it moves is the
angular displacement of the whole body; θ is
measured from a fixed direction in the plane of

motion of P, which we take to be the x′-axis,

chosen parallel to the x-axis. Note, as shown,
the axis of rotation is the z – axis and the plane
of the motion of the particle is the x - y plane.
Fig. 7.33 also shows θ

0
, the angular

displacement at t = 0.

We also recall that the angular velocity is
the time rate of change of angular displacement,
ω = dθ/dt. Note since the axis of rotation is fixed,
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there is no need to treat angular velocity as a

vector. Further, the angular acceleration, α =

dω/dt.

The kinematical quantities in rotational
motion, angular displacement (θ), angular
velocity (ω) and angular acceleration (α)
respectively are analogous to kinematic
quantities in linear motion, displacement (x ),
velocity (v) and acceleration (a). We know the
kinematical equations of linear motion with
uniform (i.e. constant) acceleration:

v = v
0
 + at (a)

2
0 0

1

2
x x t atυ= + + (b)

2 2
0 2axυ υ= + (c)

where x
0
 = initial displacement and v

0
= initial

velocity. The word ‘initial’ refers to values of the
quantities at t = 0

The corresponding kinematic equations for
rotational motion with uniform angular
acceleration are:

0 t= +ω ω α (7.38)

2
0 0

1

2
t t= + +θ θ ω α (7.39)

and 2 2
0 02 ( – )= +ω ω α θ θ (7.40)

where θ
0
= initial angular displacement of the

rotating body, and ω
0 
= initial angular velocity

of the body.

Fig.7.33 Specifying the angular position of a rigid

body.

Example 7.13  Obtain Eq. (7.38) from first
principles.

Answer   The angular acceleration is uniform,
hence

d

d
constant

t

ω
α= = (i)

Integrating this equation,

ω α= +∫ dt c

   (as is constant)t cα α= +
At t = 0,  ω = ω

0 
(given)

From (i) we get at t = 0, ω = c = ω
0

Thus, ω = αt + ω
0 
 as required.

With the definition of ω = dθ/dt we may
integrate Eq. (7.38) to get Eq. (7.39). This
derivation and the derivation of Eq. (7.40) is
left as an exercise.

Example 7.14  The angular speed of a
motor wheel is increased from 1200 rpm
to 3120 rpm in 16 seconds. (i) What is its
angular acceleration, assuming the
acceleration to be uniform? (ii) How many
revolutions does the engine make during
this time?

Answer
(i) We shall use ω = ω

0 
+ αt

ω
0
 =  initial angular speed in rad/s

=  2π × angular speed in rev/s

=  
2 angular speed in rev/min 

60 s/min

π ×

=  
2 1200 

rad/s
60

π ×

= 40π  rad/s

Similarly ω = final angular speed in rad/s

= 
2 3120 

rad/s
60

π ×

= 2π × 52 rad/s

= 104 π rad/s

∴ Angular acceleration

0

t

ω ω
α

−
= = 4 π  rad/s2
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The angular acceleration of the engine

= 4π rad/s2

(ii) The angular displacement in time t is
given by

2
0

1

2
t tθ ω α= +

21
(40 16 4 16 )

2
π π= × + × ×  rad

(640 512 )π π= +  rad

= 1152π rad

Number of revolutions = 
1152

576
2

π
π

=      t

7.12 DYNAMICS OF ROTATIONAL MOTION
ABOUT A FIXED AXIS

Table 7.2 lists quantities associated with linear
motion and their analogues in rotational motion.
We have already compared kinematics of the
two motions. Also, we know that in rotational
motion moment of inertia and torque play the
same role as mass and force respectively in
linear motion. Given this we should be able to
guess what the other analogues indicated in the
table are. For example, we know that in linear
motion, work done is given by F dx, in rotational

motion about a fixed axis it should be dτ θ ,

since we already know the correspondence

d dx θ→  and F τ→ . It is, however, necessary

that these correspondences are established on
sound dynamical considerations. This is what
we now turn to.

Before we begin, we note a simplification
that arises in the case of rotational motion
about a fixed axis. Since the axis is fixed, only
those components of torques, which are along
the direction of the fixed axis need to be
considered in our discussion. Only these
components can cause the body to rotate about
the axis. A component of the torque
perpendicular to the axis of rotation will tend
to turn the axis from its position. We specifically
assume that there will arise necessary forces of
constraint to cancel the effect of the
perpendicular components of the (external)
torques, so that the fixed position of the axis
will be maintained. The perpendicular
components of the torques, therefore need not
be taken into account. This means that for our
calculation of torques on a rigid body:

(1) We need to consider only those forces that
lie in planes perpendicular to the axis.
Forces which are parallel to the axis will
give torques perpendicular to the axis and
need not be taken into account.

(2) We need to consider only those components
of the position vectors which are
perpendicular to the axis. Components of
position vectors along the axis will result in
torques perpendicular to the axis and need
not be taken into account.

Work done by a torque

Fig. 7.34 Work done by a force F
1 
acting on a particle

of a body rotating about a fixed axis; the

particle describes a circular path with

centre C on the axis;  arc P
1
P′

1
(ds

1
) gives

the displacement of the particle.

Figure 7.34 shows a cross-section of a rigid
body rotating about a fixed axis, which is taken
as the z-axis (perpendicular to the plane of the
page; see Fig. 7.33). As said above we need to
consider only those forces which lie in planes
perpendicular to the axis. Let F

1
 be one such

typical force acting as shown on a particle of
the body at point P

1
 with its line of action in a

plane perpendicular to the axis. For convenience
we call  this to be the x′–y′ plane (coincident
with the plane of the page). The particle at P

1

describes a circular path of radius r
1
 with centre

C on the axis; CP
1
 = r

1
.

In time ∆t, the point moves to the position
P

1
′. The displacement of the particle ds

1
,

therefore, has magnitude ds
1
 = r

1
dθ and

direction tangential at P
1
 to the circular path

as shown. Here dθ is the angular displacement

of the particle, dθ = 1 1P CP∠ ′ .The work done by

the force on the particle is

dW
1
 = F

1
. ds

1
= F

1
ds

1
 cosφ

1
= F

1
(r

1 
dθ)sinα

1

where φ
1
 is the angle between F

1
 and the tangent
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at P
1,
 and α

1
 is the angle between  F

1 
and the

radius vector OP
1
; φ

1
 + α

1
 = 90°.

The torque due to F
1 

about the origin is
OP

1 
× F

1
. Now OP

1
 = OC + OP

1
. [Refer to

Fig. 7.17(b).] Since OC is along the axis, the
torque resulting from it is excluded from our
consideration. The effective torque due to F

1
 is

τττττ
1
= CP × F

1
; it is directed along the axis of rotation

and has a magnitude τ
1
= r

1
F

1 
sinα , Therefore,

dW
1
 = τ

1
dθ

If there are more than one forces acting on
the body, the work done by all of them can be
added to give the total work done on the body.
Denoting the magnitudes of the torques due to
the different forces as τ

1
, τ

2
, …  etc,

1 2d ( ...)dW τ τ θ= + +

Remember, the forces giving rise to the
torques act on different particles, but the

angular displacement dθ is the same for all

particles. Since all the torques considered are
parallel to the fixed axis, the magnitude τ of the
total torque is just the algebraic sum of the
magnitudes of the torques, i.e., τ = τ1 + τ2 + .....
We, therefore, have

d dW τ θ= (7.41)

This expression gives the work done by the
total (external) torque τ which acts on the body
rotating about a fixed axis. Its similarity with
the corresponding expression

dW= F ds

for linear (translational) motion is obvious.

Dividing both sides of Eq. (7.41) by dt gives

d d

d d

W
P

t t

θ
τ τω= = =

or P τω= (7.42)

This is the instantaneous power. Compare
this expression for power in the case of
rotational motion about a fixed axis with that of
power in the case of linear motion,

P = Fv

In a perfectly rigid body there is no internal
motion. The work done by external torques is
therefore, not dissipated and goes on to increase
the kinetic energy of the body. The rate at which
work is done on the body is given by Eq. (7.42).
This is to be equated to the rate at which kinetic
energy increases. The rate of increase of kinetic
energy is

d

d

d

dt

I
I

t

ω ω ω
2

2

2

2







=

( )

We assume that the moment of inertia does
not change with time. This means that the mass
of the body does not change, the body remains
rigid and also the axis does not change its
position with respect to the body.

Since d /d ,tα ω=  we get

d

dt

I
I

ω
ω α

2

2







=

Equating rates of work done and of increase
in kinetic energy,

Iτω ω α=

Table 7.2 Comparison of Translational and Rotational Motion

Linear Motion Rotational Motion about a Fixed Axis

1 Displacement x Angular displacement θ

2 Velocity v = dx/dt Angular velocity ω = dθ/dt

3 Acceleration a = dv/dt Angular acceleration α = dω/dt

4 Mass M Moment of inertia I

5 Force F = Ma Torque τ = I α

6 Work dW = F ds Work W = τ dθ

7 Kinetic energy K = Mv2/2 Kinetic energy K = Iω2/2

8 Power P = F v Power P = τω

9 Linear momentum p = Mv Angular momentum L = Iω
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Iτ α= (7.43)

Eq. (7.43) is similar to Newton’s second law
for linear motion expressed symbolically as

F = ma

Just as force produces acceleration, torque

produces angular acceleration in a body. The

angular acceleration is directly proportional to

the applied torque and is inversely proportional

to the moment of inertia of the body. In this

respect, Eq.(7.43) can be called Newton’s second

law for rotational motion about a fixed axis.

Example 7.15  A cord of negligible mass
is wound round the rim of a fly wheel of
mass 20 kg and radius 20 cm. A steady
pull of 25 N is applied on the cord as shown
in Fig. 7.35. The flywheel is mounted on a
horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of
the wheel.

(b) Find the work done by the pull, when
2m of the cord is unwound.

(c) Find also the kinetic energy of the
wheel at this point. Assume that the
wheel starts from rest.

(d) Compare answers to parts (b) and (c).

Answer

Fig. 7.35

(a) We use I α = τ
the torque τ = F R

= 25 × 0.20 Nm (as R = 0.20m)

                        = 5.0 Nm

I = Moment of inertia of flywheel about its

axis 
2

2

MR
=

= 
220.0 (0.2)

2

×
 = 0.4 kg m2

α = angular acceleration
   = 5.0 N m/0.4 kg m2 = 12.5 s–2

(b) Work done by the pull unwinding 2m of the
cord

= 25 N × 2m = 50 J

(c) Let ω be the final angular velocity. The

kinetic energy gained =  
21

2
Iω ,

since the wheel starts from rest. Now,

2 2
0 02 , 0ω ω αθ ω= + =

The angular displacement θ = length of

unwound string / radius of wheel
= 2m/0.2 m = 10 rad

ω
2 22 12 5 10 0 250= × × =. . )(rad/s

∴

(d) The answers are the same, i.e. the kinetic energy
gained by the wheel = work   done by the force.
There is no loss of energy due to friction.   t

7.13 ANGULAR MOMENTUM IN CASE OF
ROTATION ABOUT A FIXED AXIS

We have studied in section 7.7, the angular
momentum of a system of particles. We already
know from there that the time rate of total
angular momentum of a system of particles
about a point is equal to the total external torque
on the system taken about the same point. When
the total external torque is zero, the total angular
momentum of the system is conserved.

We now wish to study the angular momentum
in the special case of rotation about a fixed axis.
The general expression for the total angular
momentum of the system of n particles is

L r p= ×
=
∑ i i

i

N

1
(7.25b)

We first consider the angular momentum of
a typical particle of the rotating rigid body. We
then sum up the contributions of individual
particles to get L of the whole body.

For a typical particle l = r × p. As seen in the
last section r = OP = OC + CP [Fig. 7.17(b)]. With
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p = m v ,

( ) ( )m m= × + ×l OC v CP v

The magnitude of the linear velocity v of the
particle at P is given by v = ωr⊥ where r⊥ is the
length of CP or the perpendicular distance of P
from the axis of rotation. Further, v is tangential
at P to the circle which the particle describes.
Using the right-hand rule one can check that
CP × v is parallel to the fixed axis. The unit
vector along the fixed axis (chosen as the z-axis)
is �k . Hence

( ) �m r mv⊥× =CP v k

= �2mr ω⊥ k (since υ = ωr⊥ )

Similarly, we can check that OC × v is
perpendicular to the fixed axis. Let us denote
the part of  l along the fixed axis (i.e. the z-axis)
by l

z
, then

 z m= ×l CP v = �2mr ω⊥ k

and z m= + ×l l OC v

We note that l
z
 is parallel to the fixed axis,

but l is not. In general, for a particle, the angular
momentum l is not along the axis of rotation,
i.e. for a particle, l and ωωωωω are not necessarily
parallel. Compare this with the corresponding
fact in translation. For a particle, p and v are
always parallel to each other.

For computing the total angular momentum
of the whole rigid body, we add up the
contribution of each particle of the body.

Thus L l l OC v= = + ×∑ ∑∑i iz i i im

We denote by ⊥L  and zL  the components

of L  respectively perpendicular to the z-axis

and along the z-axis;

L OC v⊥ = ×∑ i i im (7.44a)

where m
i
 and v

i
 are respectively the mass and

the velocity of the ith particle and C
i
 is the centre

of the circle described by the particle;

and L l kz iz

i

i im r= =




∑ ∑ 2

ω
µ

or �
z Iω=L k (7.44b)

The last step follows since the perpendicular
distance of the ith particle from the axis is r

i
;

and by definition the moment of inertia of the

body about the axis of rotation is I m ri i= ∑ 2 .

Note z ⊥= +L L L (7.44c)

The rigid bodies which we have mainly
considered in this chapter are symmetric about
the axis of rotation, i.e. the axis of rotation is
one of their symmetry axes. For such bodies,
for a given OC

i
, for every particle which has a

velocity v
i
 , there is another particle of velocity

–v
i
  located diametrically opposite on the circle

with centre C
i
 described by the particle. Together

such pairs will contribute zero to ⊥L  and as a

result for symmetric bodies ⊥L  is zero, and

hence

�
z Iω= =L L k (7.44d)

For bodies, which are not symmetric about
the axis of rotation, L is not equal to L

z
 and

hence L does not lie along the axis of rotation.
Referring to Table 7.1, can you tell in which

cases L = L
z 
will not apply?

Let us differentiate Eq. (7.44b). Since �k is a

fixed (constant) vector, we get

d

d

d

dt t
IzL k( )= ( )





ω
µ

Now, Eq. (7.28b) states

d

dt
=

L
ττττ

As we have seen in the last section, only
those components of the external torques which
are along the axis of rotation, need to be taken
into account, when we discuss rotation about a

fixed axis. This means we can take �τ= kττττ .

Since z ⊥= +L L L  and the direction of L
z
 (vector

�k ) is fixed, it follows that for rotation about a

fixed axis,

�d

d
z

t
τ=

L
k (7.45a)

and 
d

0
dt

⊥ =
L

(7.45b)

Thus, for rotation about a fixed axis, the
component of angular momentum
perpendicular to the fixed axis is constant. As

�
z Iω=L k , we get from Eq. (7.45a),

( )d

d
I

t
ω τ= (7.45c)
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If the moment of inertia I does not change with
time,

( )d d

d d
I I I

t t

ωω α= =

and we get from Eq. (7.45c),

Iτ α= (7.43)

We have already derived this equation using
the work - kinetic energy route.

7.13.1 Conservation of angular momentum

We are now in a position to revisit the principle
of conservation of angular momentum in the
context of rotation about a fixed axis. From Eq.
(7.45c), if the external torque is zero,

L
z
 = Iω = constant (7.46)

For symmetric bodies, from Eq. (7.44d), L
z

may be replaced by L .(L and L
z 
 are respectively

the magnitudes of L and L
z
.)

This then is the required form, for fixed axis
rotation, of Eq. (7.29a), which expresses the
general law of conservation of angular
momentum of a system of particles.  Eq. (7.46)
applies to many situations that we come across
in daily life.  You may do this experiment with
your friend.  Sit on a swivel chair (a chair with a
seat, free to rotate about a pivot) with your arms
folded and feet not resting on, i.e., away from,
the ground.  Ask your friend to rotate the chair
rapidly. While the chair is rotating with

considerable angular speed stretch your arms
horizontally.  What happens?  Your angular
speed is reduced.  If you bring back your arms
closer to your body, the angular speed increases
again.  This is a situation where the principle of
conservation of angular momentum is
applicable.  If friction in the rotational
mechanism is neglected, there is no external
torque about the axis of rotation of the chair
and hence Iω is constant.  Stretching the arms
increases I about the axis of rotation, resulting
in decreasing the angular speed ω.  Bringing
the arms closer to the body has the opposite
effect.

A circus acrobat and a diver take advantage
of this principle.  Also, skaters and classical,
Indian or western, dancers performing a
pirouette (a spinning about a tip–top) on the toes
of one foot display ‘mastery’ over this principle.
Can you explain?

7.14  ROLLING MOTION

One of the most common motions observed in
daily life is the rolling motion.  All wheels used
in transportation have rolling motion.  For
specificness we shall begin with the case of a
disc, but the result will apply to any rolling body
rolling on a level surface.  We shall assume that
the disc rolls without slipping.  This means that
at any instant of time the bottom of the disc

Fig 7.36 (a) A demonstration of conservation of

angular momentum. A girl sits  on a

swivel chair and stretches her arms/

brings her arms closer to the body.

Fig 7.36 (b) An acrobat employing the principle of

conservation of angular momentum in

her performance.
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which is in contact with the surface is at rest
on the surface.

We have remarked earlier that rolling motion
is a combination of rotation and translation.  We
know that the translational motion of a system
of particles is the motion of its centre of mass.

Fig. 7.37 The rolling motion (without slipping) of a

disc on a level surface. Note at any instant,

the point of contact P
0
 of the disc with the

surface is at rest; the centre of mass of

the disc moves with velocity, v
cm

. The disc

rotates with angular velocity ω about its

axis which passes through C; v
cm

 =Rω,

where R is the radius of the disc.

Let v
cm

 be the velocity of the centre of mass

and therefore the translational velocity of the

disc. Since the centre of mass of the rolling disc

is at its geometric centre C (Fig. 7. 37), v
cm 

is

the velocity of C.  It is parallel to the level

surface.  The rotational motion of the disc is

about its symmetry axis, which passes through

C.  Thus, the velocity of any point of the disc,

like P
0
, P

1
 or P

2
, consists of two parts, one is the

translational velocity v
cm 

and the other is the

linear velocity v
r 
on account of rotation. The

magnitude of  v
r
 is v

r 
= rω, where ω is the angular

velocity of the rotation of the disc about the axis

and r is the distance of the point from the axis

(i.e. from C).  The velocity v
r 
is directed

perpendicular to the radius vector of the given

point with respect to C.  In Fig. 7.37, the velocity

of the point P
2
 (v

2
) and its components 

 
v

r 
and

v
cm 

are shown;  v
r 
here is perpendicular to CP

2 
.

It is easy to show that v
z
 is perpendicular to the

line P
O
P

2
. Therefore the line passing through P

O

and parallel to ωωωωω is called the instantaneous axis

of rotation.

At P
o
, the linear velocity, v

r
, due to rotation

is directed exactly opposite to the translational

velocity v
cm

.
 
Further the magnitude of  v

r 
here is

Rω, where R is the radius of the disc. The

condition that P
o 
is instantaneously at rest

requires v
cm  

= Rω. Thus for the disc the condition

for rolling without slipping is

υ ωcm R= (7.47)

Incidentally, this means that the velocity of

point P
1
 at the top of the disc (v

1
) has a

magnitude v
cm

+ Rω or 2 v
cm 

and is directed

parallel to the level surface. The condition (7.47)

applies to all rolling bodies.

7.14.1 Kinetic Energy of Rolling Motion

Our next task will be to obtain an expression
for the kinetic energy of a rolling body. The
kinetic energy of a rolling body can be separated
into kinetic energy of translation and kinetic
energy of rotation. This is a special case of a
general result for a system of particles,
according to which the kinetic energy of a
system of particles (K) can be separated into
the kinetic energy of translational motion of the
centre of mass (MV2/2) and kinetic energy of
rotational motion about the centre of mass of
the system of particles (K′). Thus,

(7.48)
We assume  this general result (see Exercise

7.31), and apply it to the case of rolling motion.

In our notation, the kinetic energy of the centre
of mass, i.e., the kinetic energy of translation,

of the rolling body is mv2
cm

 /2, where m is the
mass of the body and v

cm
 is the centre of the

mass velocity. Since the motion of the rolling

body about the centre of mass is rotation, K′
represents the kinetic energy of rotation of the

body; , where I is the moment of
inertia about the appropriate axis, which is the

symmetry axis of the rolling body. The kinetic
energy of  a rolling body, therefore, is given by

(7.49a)

Substituting I = mk2 where k = the
corresponding radius of gyration of the body
and v

cm
= R ω, we get

or  (7.49b)
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u

Equation (7.49b) applies to any rolling body:
a disc, a cylinder, a ring or a sphere.

Example 7.16  Three bodies, a ring, a solid
cylinder and a solid sphere roll down the
same inclined plane without slipping.  They
start from rest.  The radii of the bodies are
identical.  Which of the bodies reaches the
ground with maximum velocity?

Answer  We assume conservation of energy of
the rolling body, i.e. there is no loss of energy
due to friction etc. The potential energy lost by
the body in rolling down the inclined plane
(= mgh) must, therefore, be equal to kinetic
energy gained.  (See Fig.7.38) Since the bodies
start from rest the kinetic energy gained is equal
to the final kinetic energy of the bodies.  From

Eq. (7.49b), 

2
2

2

1
1

2

k
K m

R
υ

 
= + 

 
, where v is the

final velocity of (the centre of mass of) the body.
Equating K and mgh,

Fig.7.38

2
2

2

1
1

2

k
mgh m

R
υ

 
= + 

 

or 
2

2 2

2

1

gh

k R
υ

 
=  

+ 

Note  is independent of the mass of the
rolling body;

For a ring, k2 = R2

2

1 1
ring

gh
υ =

+ ,

      = gh

For a solid cylinder k2 = R2/2

2

1 1 2
disc

ghυ =
+

      = 
4

3

gh

For a solid sphere k2 = 2R2/5

2

1 2 5
sphere

ghυ =
+

      = 
10

7

gh

From the results obtained it is clear that among
the three bodies the sphere has the greatest and
the ring has the least velocity of the centre of mass
at the bottom of the inclined plane.

Suppose the bodies have the same mass.  Which
body has the greatest rotational kinetic energy while
reaching the bottom of the inclined plane? t

SUMMARY

1. Ideally, a rigid body is one for which the distances between different particles of the
body do not change, even though there are forces on them.

2. A rigid body fixed at one point or along a line can have only rotational motion. A rigid
body not fixed in some way can have either pure translational motion or a combination
of translational and rotational motions.

3. In rotation about a fixed axis, every particle of the rigid body moves in a circle which
lies in a plane perpendicular to the axis and has its centre on the axis. Every Point in
the rotating rigid body has the same angular velocity at any instant of time.

4. In pure translation, every particle of the body moves with the same velocity at any
instant of time.

5. Angular velocity is a vector. Its magnitude is ω = dθ/dt and it is directed along the axis
of rotation. For rotation about a fixed axis, this vector ωωωωω has a fixed direction.
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6. The vector or cross product of two vector a and b is a vector written as a×b. The
magnitude of this vector is absinθ  and its direction is given by the right handed screw
or the right hand rule.

7. The linear velocity of a particle of a rigid body rotating about a fixed axis is given by
v = ωωωωω × r, where r is the position vector of the particle with respect to an origin along
the fixed axis. The relation applies even to more general rotation of a rigid body with
one point fixed. In that case r is the position vector of the particle with respect to the
fixed point taken as the origin.

8. The centre of mass of a system of n particles is defined as the point whose position
vector is

R
r

=
∑m

M

i i

9. Velocity of the centre of mass of a system of particles is given by V = P/M, where P is the
linear momentum of the system. The centre of mass moves as if all the mass of the
system is concentrated at this point and all the external forces act at it. If the total
external force on the system is zero, then the total linear momentum of the system is
constant.

10. The angular momentum of a system of n particles about the origin is

L r p  
  

= ×
=
∑ i

i

n

i

1

The torque or moment of force on a system of n particles about the origin is

ττ = ×∑ r Fi i

1

The force  F
i  
acting on the ith particle includes the external as well as internal forces.

Assuming Newton’s third law of motion and that forces between any two particles act
along the line joining the particles, we can show τττττ

int
 = 0 and

d

dt
ext

L
= ττ

11. A rigid body is in mechanical equilibrium if

(1) it is in translational equilibrium, i.e., the total external force on it is zero : F 0i =∑ ,

and
(2) it is in rotational equilibrium, i.e. the total external torque on it is zero :

ττi i i= × =∑ ∑ r F 0 .

12. The centre of gravity of an extended body is that point where the total gravitational
torque on the body is zero.

13. The moment of intertia of a rigid body about an axis is defined by the formula  I m ri i= ∑ 2

where r
i
 is the perpendicular distance of the ith point of the body from the axis. The

kinetic energy of rotation is 
21

2
K Iω= .

14. The theorem of parallel axes: 2
z zI I Ma′ = + , allows us to determine the moment of

intertia of a rigid body about an axis as the sum of the moment of inertia of the body
about a parallel axis through its centre of mass and the product of mass and square of
the perpendicular distance between these two axes.
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15. Rotation about a fixed axis is directly analogous to linear motion in respect of kinematics
and dynamics.

16. For a rigid body rotating about a fixed axis (say, z-axis) of rotation, L
z
 = Iω, where I is

the moment of inertia about z-axis. In general, the angular momentum L for such a
body is not along the axis of rotation. Only if the body is symmetric about the axis of

rotation, L is along the axis of rotation. In that case, zL I= =L ω . The angular

acceleration of a rigid body rotating about a fixed axis is given by Iα = τ. If the external
torque τ acting on the body is zero, the component of angular momentum about the
fixed axis (say, z-axis), L

z
 (=Iω) of such a rotating body is constant.

17. For rolling motion without slipping v
cm

 = Rω, where v
cm

  is the velocity of translation (i.e.
of the centre of mass), R is the radius and m is the mass of the body. The kinetic energy
of such a rolling body is the sum of kinetic energies of translation and rotation:

2 21 1

2 2
cmK m v I= + ω .

POINTS TO PONDER

1. To determine the motion of the centre of mass of a system no knowledge of internal
forces of the system is required. For this purpose we need to know only the external
forces on the body.

2. Separating the motion of a system of particles as the motion of the centre of mass, (i.e.,
the translational motion of the system) and motion about (i.e. relative to) the centre of
mass of the system is a useful technique in dynamics of a system of particles. One
example of this technique is separating the kinetic energy of a system of particles K as
the kinetic energy of the system about its centre of mass K′ and the kinetic energy of
the centre of mass MV2/2,

      K = K′ + MV2/2
3. Newton’s Second Law for finite sized bodies (or systems of particles) is based in  Newton’s

Second Law and also Newton’s Third Law for particles.
4. To establish that the time rate of change of the total angular momentum of a system of

particles is the total external torque in the system, we need not only Newton’s second
law for particles, but also Newton’s third law with the provision that the forces between
any two particles act along the line joining the particles.

5. The vanishing of the total external force and the vanishing of the total external torque
are independent conditions. We can have one without the other. In a couple, total
external force is zero, but total torque is non-zero.

6. The total torque on a  system is independent of the origin if the total external force is
zero.

7. The centre of gravity of a body coincides with its centre of mass only if the gravitational
field does not vary from one part of the body to the other.

8. The angular momentum L and the angular velocity ωωωωω are not necessarily parallel vectors.
However, for the simpler situations discussed in this chapter when rotation is about a
fixed axis which is an axis of symmetry of the rigid body, the relation L = Iωωωωω holds good,
where I is the moment of the inertia of the body about the rotation axis.
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EXERCISES

7.1 Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv)
cube, each of uniform mass density. Does the centre of mass of a body necessarily
lie inside the body ?

7.2 In the HCl molecule, the separation between the nuclei of the two atoms is about
1.27 Å (1 Å = 10-10 m). Find the approximate location of the CM of the molecule,
given that a chlorine atom is about 35.5 times as massive as a hydrogen atom and
nearly all the mass of an atom is concentrated in its nucleus.

7.3 A child sits stationary at one end of a long trolley moving uniformly with a speed V
on a smooth horizontal floor. If the child gets up and runs about on the trolley in any
manner, what is the speed of the CM of the (trolley + child) system ?

7.4 Show that the area of the triangle contained between the vectors a and b is one half
of the magnitude of a × b.

7.5 Show that a.(b × c) is equal in magnitude to the volume of the parallelepiped formed
on the three vectors , a, b and c.

7.6 Find the components along the x, y, z axes of the angular momentum l of a particle,
whose position vector is r with components x, y, z and momentum is p with
components p

x
, p

y
 and p

z
. Show that if the particle moves only in the x-y plane the

angular momentum has only a z-component.
7.7 Two particles, each of mass m and speed v, travel in opposite directions along parallel

lines separated by a distance d. Show that the angular momentum vector of the two
particle system is the same whatever be the point about which the angular momentum
is taken.

7.8 A non-uniform bar of weight W is suspended at rest by two strings of negligible
weight as shown in Fig.7.39. The angles made by the strings with the vertical are
36.9° and 53.1° respectively. The bar is 2 m long. Calculate the distance d of the
centre of gravity of the bar from its left end.

Fig. 7.39

7.9 A car weighs 1800 kg. The distance between its front and back axles is 1.8 m. Its
centre of gravity is 1.05 m behind the front axle. Determine the force exerted by the
level ground on each front wheel and each back wheel.

7.10 (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the
moment of inertia of the sphere about any of its diameters to be 2MR2/5, where
M is the mass of the sphere and R is the radius of the sphere.

(b) Given the moment of inertia of a disc of mass M and radius R about any of its
diameters to be MR2/4, find its moment of inertia about an axis normal to the
disc and passing through a point on its edge.
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7.11 Torques of equal magnitude are applied to a hollow cylinder and a solid sphere, both
having the same mass and radius. The cylinder is free to rotate about its standard
axis of symmetry, and the sphere is free to rotate about an axis passing through its
centre. Which of the two will acquire a greater angular speed after a given time.

7.12 A solid cylinder of mass 20 kg rotates about its axis with angular speed 100 rad s-1.
The radius of the cylinder is 0.25 m. What is the kinetic energy associated with the
rotation of the cylinder? What is the magnitude of angular momentum of the cylinder
about its axis?

7.13 (a) A child stands at the centre of a turntable with his two arms outstretched. The
turntable is set rotating with an angular speed of 40 rev/min. How much is the
angular speed of the child if he folds his hands back and thereby reduces his
moment of inertia to 2/5 times the initial value ? Assume that the turntable
rotates without friction.

(b) Show that the child’s new kinetic energy of rotation is more than the initial
kinetic energy of rotation. How do you account for this increase in kinetic energy?

7.14 A rope of negligible mass is wound round a hollow cylinder of mass 3 kg and radius
40 cm. What is the angular acceleration of the cylinder if the rope is pulled with a
force of 30 N ? What is the linear acceleration of the rope ? Assume that there is no
slipping.

7.15 To maintain a rotor at a uniform angular speed of 200 rad s-1, an engine needs to
transmit a torque of 180 N m. What is the power required by the engine ?
(Note: uniform angular velocity in the absence of friction implies zero torque. In
practice, applied torque is needed to counter frictional torque). Assume that the
engine is 100% efficient.

7.16 From a uniform disk of radius R, a circular hole of radius R/2 is cut out. The centre
of the hole is at R/2 from the centre of the original disc. Locate the centre of gravity
of the resulting flat body.

7.17 A metre stick is balanced on a knife edge at its centre. When two coins, each of mass
5 g are put one on top of the other at the 12.0 cm mark, the stick is found to be
balanced at 45.0 cm. What is the mass of the metre stick?

7.18 A solid sphere rolls down two different inclined planes of the same heights but
different angles of inclination. (a) Will it reach the bottom with the same speed in
each case? (b) Will it take longer to roll down one plane than the other? (c) If so,
which one and why?

7.19 A hoop of radius 2 m weighs 100 kg. It rolls along a horizontal floor so that its centre
of mass has a speed of 20 cm/s. How much work has to be done to stop it?

7.20 The oxygen molecule has a mass of 5.30 × 10-26 kg and a moment of inertia of
1.94×10-46 kg m2 about an axis through its centre perpendicular to the lines joining
the two atoms. Suppose the mean speed of such a molecule in a gas is 500 m/s and
that its kinetic energy of rotation is two thirds of its kinetic energy of translation.
Find the average angular velocity of the molecule.

7.21 A solid cylinder rolls up an inclined plane of angle of inclination 30°. At the bottom
of the inclined plane the centre of mass of the cylinder has a speed of 5 m/s.
(a) How far will the cylinder go up the plane?
(b) How long will it take to return to the bottom?

Additional Exercises

7.22 As shown in Fig.7.40, the two sides of a step ladder BA and CA are 1.6 m long and
hinged at A. A rope DE, 0.5 m is tied half way up. A weight 40 kg is suspended from
a point F, 1.2 m from B along the ladder BA. Assuming the floor to be frictionless
and neglecting the weight of the ladder, find the tension in the rope and forces
exerted by the floor on the ladder. (Take g = 9.8 m/s2)
(Hint: Consider the equilibrium of each side of the ladder separately.)
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Fig.7.40

7.23 A man stands on a rotating platform, with his arms stretched horizontally holding a
5 kg weight in each hand. The angular speed of the platform is 30 revolutions per
minute. The man then brings his arms close to his body with the distance of each
weight from the axis changing from 90cm to 20cm. The moment of inertia of the
man together with the platform may be taken to be constant and equal to 7.6 kg m2.
(a) What is his new angular speed? (Neglect friction.)
(b) Is kinetic energy conserved in the process? If not, from where does the change
come about?

7.24 A bullet of mass 10 g and speed 500 m/s is fired into a door and gets embedded
exactly at the centre of the door. The door is 1.0 m wide and weighs 12 kg. It is
hinged at one end and rotates about a vertical axis practically without friction. Find
the angular speed of the door just after the bullet embeds into it.
(Hint: The moment of inertia of the door about the vertical axis at one end is ML2/3.)

7.25 Two discs of moments of inertia I1 and I2 about their respective axes (normal to the
disc and passing through the centre), and rotating with angular speeds ω1 and ω2
are brought into contact face to face with their axes of rotation coincident. (a) What
is the angular speed of the two-disc system? (b) Show that the kinetic energy of the
combined system is less than the sum of the initial kinetic energies of the two discs.
How do you account for this loss in energy? Take ω1 ≠ ω2.

7.26 (a) Prove the theorem of perpendicular axes.

(Hint : Square of the distance of a point (x, y) in the x–y plane from an axis through
the origin and perpendicular to the plane is x2+y2).

(b) Prove the theorem of parallel axes.
(Hint : If the centre of mass of a system of n particles is chosen to be the origin

mi ir =∑ 0 ).

7.27 Prove the result that the velocity v of translation of a rolling body (like a ring, disc,
cylinder or sphere) at the bottom of an inclined plane of a height h is given by

( )
2

2 2

2

1 /

gh
v

k R
=

+

using dynamical consideration (i.e. by consideration of forces and torques). Note k is
the radius of gyration of the body about its symmetry axis, and R is the radius of the
body. The body starts from rest at the top of the plane.

7.28 A disc rotating about its axis with angular speed ωo is placed lightly (without any
translational push) on a perfectly frictionless table. The radius of the disc is R. What
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are the linear velocities of the points A, B and C on the disc shown in Fig. 7.41? Will the disc roll in
the direction indicated ?

Fig. 7.41

7.29 Explain why friction is necessary to make the disc in Fig. 7.41 roll in the direction indicated.
(a) Give the direction of frictional force at B, and the sense of frictional torque, before perfect rolling

begins.
(b) What is the force of friction after perfect rolling begins ?

7.30 A solid disc and a ring, both of radius 10 cm are placed on a horizontal table
simultaneously, with initial angular speed equal to 10 π rad s-1. Which of the two will start to roll
earlier ? The co-efficient of kinetic friction is µ

k
 = 0.2.

7.31 A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination  30o. The co-
efficient of static friction µs = 0.25.
(a) How much is the force of friction acting on the cylinder ?
(b) What is the work done against friction during rolling ?
(c) If the inclination θ of the plane is increased, at what value of θ does the cylinder begin to skid,

and not roll perfectly ?

7.32 Read each statement below carefully, and state, with reasons, if it is true or false;
(a) During rolling, the force of friction acts in the same direction as the direction of motion of the CM

of the body.
(b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero.
(d) For perfect rolling motion, work done against friction is zero.
(e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling)

motion.
7.33 Separation of Motion of a system of particles into motion of the centre of mass and motion about the

centre of mass :

(a) Show p p V= ′ +i im

where p
i
 is the momentum of the ith particle (of mass m

i
) and p′′′′′

i
 = m

i
 v′′′′′

i
. Note v′′′′′

i
 is the velocity

of the ith particle relative to the centre of mass.

Also, prove using the definition of the centre of mass ∑ ′ =pi 0

(b) Show 2½K K MV′= +

where K is the total kinetic energy of the system of particles, K ′  is the total kinetic energy of the

system when the particle velocities are taken with respect to the centre of mass and MV2/2 is the
kinetic energy of the translation of the system as a whole (i.e. of the centre of mass motion of the
system). The result has been used in Sec. 7.14.

(c) Show L L R V= ′ + × M

where ′L = ′ × ′∑ r p
i i  is the angular momentum of the system about the centre of mass with
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velocities taken relative to the centre of mass. Remember –i i
′ =r r R ; rest of the

notation is the standard notation used in the chapter. Note ′L  and M ×R V  can

be said to be angular momenta, respectively, about and of the centre of mass of
the system of particles.

(d) Show 
d

dt

d

dt
i

′
= ′ ×

′∑L
r

p

Further, show that

d

dt
ext

′
= ′

L
ττ

where ext
′ττττ  is the sum of all external torques acting on the system about the

centre of mass.
(Hint : Use the definition of centre of mass and third law of motion. Assume the
internal forces between any two particles act along the line joining the particles.)

Pluto - A Dwarf Planet

The International Astronomical Union (IAU) at the IAU 2006 General Assembly
held on August 24, 2006, in Prague in Czech Republic, adopted a new
definition of planets in our Solar System. According to the new definition,
Pluto is no longer a planet. This means that the Solar System consists of
eight planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and
Neptune. According to the IAU usage, the ‘planet’ and ‘other bodies’ in our
Solar System, except satellites, are to be defined into three distinct categories
of celestial objects in the following way:

1. A ‘planet’ is a celestial body that (a) is in orbit around the Sun, (b) has
sufficient mass for its self-gravity to overcome rigid body forces so that it
assumes a hydrostatic equilibrium (nearly round) shape, and (c) has
cleared the neighbourhood around its orbit.

2. A ‘dwarf planet’ is a celestial body that (a) is in orbit around the Sun,
(b) has sufficient mass for its self-gravity to overcome rigid body forces so
that it assumes a hydrostatic equilibrium (nearly round) shape, (c) has
not cleared the neighbourhood around its orbit, and (d) is not a satellite.

3. All ‘other objects’, except satellites, orbiting the Sun, shall be referred to
collectively as ‘Small Solar-System Bodies’.

Unlike other eight planets in the Solar System, Pluto’s orbital path overlaps
with ‘other objects’ and the planet Neptune. The ‘other objects’ currently
include most of the Solar System asteroids, most of the Trans-Neptunian
Objects (TNOs), comets, and other small bodies.

Pluto is a ‘dwarf planet’ by the above definition and is recognised as the
prototype of a new category of Trans-Neptunian Objects.
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CHAPTER EIGHT

GRAVITATION

8.1 INTRODUCTION

Early in our lives, we become aware of the tendency of all

material objects to be attracted towards the earth.  Anything
thrown up falls down towards the earth, going uphill is lot

more tiring than going downhill, raindrops from the clouds
above fall towards the earth and  there are many other such
phenomena.  Historically it was the Italian Physicist Galileo

(1564-1642) who recognised the fact that all bodies,
irrespective of their masses, are accelerated towards the earth

with a constant acceleration.  It is said  that he made a public
demonstration of this fact.  To find the truth, he certainly did
experiments with bodies rolling down inclined planes and

arrived at a value of the acceleration due to gravity which is
close to the more accurate value obtained later.

A seemingly unrelated phenomenon, observation of stars,
planets and their motion has been the subject of attention in
many countries since the earliest of times.  Observations since

early times recognised stars which appeared in the sky with
positions unchanged year after year.  The more interesting

objects are the planets which seem to have regular motions
against the background of stars.  The earliest recorded model

for planetary motions proposed by Ptolemy about 2000 years
ago was a ‘geocentric’ model in which all celestial objects,
stars, the sun and the planets, all revolved around the earth.

The only motion that was thought to be possible for celestial
objects was motion in a circle.  Complicated schemes of motion

were put forward by Ptolemy in order to describe the observed
motion of the planets.  The planets were described as moving
in circles with the centre of the circles themselves moving in

larger circles.  Similar theories were also advanced by Indian
astronomers some 400 years later.  However a more elegant

model in which the Sun was the centre around which the
planets revolved – the ‘heliocentric’ model – was already

mentioned by Aryabhatta (5th century A.D.) in his treatise. A
thousand years later, a Polish monk named Nicolas

8.1 Introduction

8.2 Kepler’s laws

8.3 Universal law of
gravitation

8.4 The gravitational
constant

8.5 Acceleration due to
gravity of the earth

8.6 Acceleration due to
gravity below and above
the surface of earth

8.7 Gravitational potential
energy

8.8 Escape speed

8.9 Earth satellites

8.10 Energy of an orbiting
satellite

8.11 Geostationary and polar
satellites

8.12 Weightlessness

Summary

Points to ponder

Exercises

Additional exercises
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A
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Copernicus (1473-1543) proposed a definitive
model in which the planets moved in circles
around a fixed central sun.  His theory was
discredited by the church, but notable amongst
its supporters was Galileo who had to face
prosecution from the state for his beliefs.

It was around the same time as Galileo, a
nobleman called Tycho Brahe (1546-1601)
hailing from Denmark, spent his entire lifetime
recording observations of the planets with the
naked eye.  His compiled data were analysed
later by his assistant Johannes Kepler (1571-
1640). He could extract from the data three
elegant laws that now go by the name of Kepler’s
laws.  These laws were known to Newton and
enabled him to make a great scientific leap in
proposing his universal law of gravitation.

8.2  KEPLER’S LAWS

The three laws of Kepler can be stated as follows:
1.  Law of orbits : All planets move in elliptical
orbits with the Sun situated at one of the  foci

Fig. 8.1(a) An ellipse traced out by a planet around

the sun. The closest point is P and the

farthest point is A, P is called the

perihelion and A the aphelion. The

semimajor axis is half the distance AP.

Fig. 8.1(b) Drawing an ellipse. A string has its ends

fixed at F
1
 and F

2
. The tip of a pencil holds

the string taut and is moved around.

of the ellipse (Fig. 8.1a). This law was a  deviation
from the Copernican model which allowed only
circular orbits. The ellipse, of which the circle is
a special case, is a closed curve which can be
drawn very simply as follows.

Select two points F
1
 and F

2
.  Take a length

of a string and  fix its ends at F
1
 and F

2
 by pins.

With the tip of a pencil  stretch the string taut
and then draw a curve by moving the pencil
keeping the string taut throughout.(Fig. 8.1(b))
The closed curve you get is called an ellipse.
Clearly for any point T on the ellipse, the sum of
the distances from F

1
 and F

2
 is a constant.  F

1
,

F
2
 are called the focii. Join the points F

1 
and

  
F

2

and extend 
  
the line to intersect the ellipse at

points P and A as shown in Fig. 8.1(b). The
midpoint of the line PA is the centre of the ellipse
O and the length PO = AO  is called the semi-
major axis of the ellipse. For a circle, the two
focii  merge into one  and the semi-major axis
becomes the radius of the circle.
2. Law of areas : The line that joins any planet
to the sun sweeps  equal areas in equal intervals
of time (Fig. 8.2).  This law comes from the
observations that planets appear to move slower
when they are  farther from the sun than when
they are nearer.

Fig. 8.2 The planet P moves around the sun in an

elliptical orbit. The shaded area is the area

∆A swept out in a small interval of time  ∆t.

3. Law of periods : The square of the time period

of revolution of a planet is proportional to the

cube of the semi-major axis of the ellipse traced

out by  the planet.

Table 8.1 gives the approximate time periods

of revolution of eight* planets around the sun

along with values of their semi-major axes.

* Refer to information given in the Box on Page 182
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Table 8.1 Data from measurement of
planetary motions given below
confirm Kepler’s Law of Periods

(a ≡ Semi-major  axis in units of  1010 m.
T ≡ Time period of revolution of the planet

in years(y).
Q ≡ The quotient ( T2/a3  ) in units of

10 -34 y2 m-3.)

Planet a T Q

Mercury 5.79 0.24 2.95
Venus 10.8 0.615 3.00
Earth 15.0 1 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84 2.98
Neptune 450 165 2.99

Pluto* 590 248 2.99

The law of areas can be understood as a
consequence of  conservation of angular
momentum whch is valid for any central force .
A central force is such that  the force on the
planet is along the vector joining the Sun and
the planet. Let the Sun be at the origin and let
the position and momentum of the planet be
denoted by r and p  respectively. Then the area
swept out by the planet of mass m in time

interval ∆t is (Fig. 8.2) ∆A given by

∆A  = ½  (r × v∆t) (8.1)

 Hence

∆A /∆t   =½ (r × p)/m, (since  v = p/m)

                       =    L / (2 m) (8.2)
where v is the velocity,  L is the angular

momentum equal  to   ( r  ×  p).  For a central
force, which is directed along r, L is  a constant

as the planet goes around. Hence,  ∆ A /∆t is a

constant according to the last equation. This is
the law of areas. Gravitation is a central force
and hence the law of areas follows.

Example 8.1  Let  the speed of the planet
at  the  perihelion P in Fig. 8.1(a) be vP  and
the Sun-planet distance SP be rP. Relate
{rP, vP} to the corresponding quantities at
the aphelion {rA, vA}. Will the planet take
equal times to traverse BAC and CPB ?

Answer  The magnitude of the angular

momentum at P is Lp =  mp rp vp, since inspection

tells us that rp and vp are mutually

perpendicular. Similarly, LA = mp rA vA. From

angular momentum conservation
mp rp vp = mp rA vA

or

v

v

p

A

=
r

r

A

p
t

Since rA   > rp, vp > vA .

The area SBAC bounded by the ellipse and

the radius vectors SB and SC is larger than SBPC

in Fig. 8.1. From Kepler’s second law, equal areas

are swept in equal times. Hence the planet will

take a longer time to traverse BAC than CPB.

8.3  UNIVERSAL LAW OF GRAVITATION

Legend has it that observing an apple falling
from a tree, Newton was inspired to arrive at an
universal law of gravitation that led to an
explanation of terrestrial  gravitation as well as
of Kepler’s laws.  Newton’s reasoning was that
the moon revolving in an orbit of radius R

m
 was

subject to a centripetal acceleration due to
earth’s gravity of magnitude

22

2

4 m
m

m

RV
a

R T

π
= = (8.3)

where V is the speed of the moon related to the

time period T  by the relation 2 /mV R Tπ= . The

time period T is about 27.3 days and R
m
 was

already known then to be about 3.84 × 108m.  If
we substitute these numbers in Eq. (8.3), we
get a value of a

m
 much smaller than the value of

acceleration due to gravity g on the surface of
the earth, arising also due to earth’s gravitational
attraction.

Johannes Kepler
(1571–1630)  was a
scientist of German
origin. He formulated
the three laws of
planetary motion based
on the painstaking
observations of Tycho

Brahe and coworkers. Kepler himself was an
assistant to Brahe and it took him sixteen long
years to arrive at the three planetary laws. He
is also known as the founder of geometrical
optics, being the first to describe what happens
to light after it enters a telescope.

* Refer to information given in the Box on Page 182
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Central Forces

We know the time rate of change of the angular momentum of a single particle about the origin
is

d

dt
= ×

l
r F

The angular momentum of the particle is conserved, if the torque = ×r Fττττ  due to the

force F on it vanishes. This happens either when F is zero or when F is along r. We are

interested in forces which satisfy the latter condition. Central forces satisfy this condition.

A ‘central’ force is always directed towards or away from a fixed point, i.e., along the position
vector of the point of application of the force with respect to the fixed point. (See Figure below.)
Further, the magnitude of a central force F depends on r, the distance of the point of application
of the force from the fixed point; F = F(r).
In the motion under a central force the angular momentum is always conserved. Two important

results follow from this:
(1) The motion of a particle under the central force is always confined to a plane.
(2) The position vector of the particle with respect to the centre of the force (i.e. the fixed point)

has a constant areal velocity. In other words the position vector sweeps out equal areas in
equal times as the particle moves under the influence of the central force.

Try to prove both these results. You may need to know that the areal velocity is given by :
dA/dt = ½ r v sin α.

An immediate application of the above discussion can be made to the motion of a planet
under the gravitational force of the sun. For convenience the sun may be taken to be so heavy
that it is at rest. The gravitational force of the sun on the planet is directed towards the sun.
This force also satisfies the requirement F = F(r), since F = G m

1
m

2
/r2 where m

1
 and m

2
 are

respectively the masses of the planet and the sun and G is the universal constant of gravitation.
The two results (1) and (2) described above, therefore, apply to the motion of the planet. In fact,
the result (2) is the well-known second law of Kepler.

Tr is the trejectory of the particle under the central force. At a position P, the force is directed

along OP, O is the centre of the force taken as the origin. In time ∆t, the particle moves from P to P′,
arc PP′ = ∆s = v ∆t. The tangent PQ  at P to the trajectory gives the direction of the velocity at P. The

area swept in ∆t is the area of sector POP′ ( )sinr α≈ PP′/2 = (r v sin a) ∆t/2.)
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This clearly shows that the force due to
earth’s gravity decreases with distance.  If one
assumes that the gravitational force due to the
earth decreases in proportion to the inverse
square of the distance from the centre of the

earth, we will have a
m
 α 2

mR− ; g α 2
ER−  and we get

2

2

m

m E

Rg

a R
=

�  3600 (8.4)

in agreement with a value of g �  9.8  m s-2 and

the value of a
m
 from Eq. (8.3).  These observations

led Newton to propose the following Universal Law
of Gravitation :
Every body in the universe attracts every other
body with a force which is directly proportional
to the product of their masses and inversely
proportional to the square of the distance
between them.

The quotation is essentially from Newton’s
famous treatise  called ‘Mathematical Principles
of Natural Philosophy’ (Principia for short).

Stated Mathematically, Newton’s gravitation
law reads : The force F on a point mass m

2
 due

to another point mass m
1
 has the magnitude

1 2
2

| |
m m

G
r

=F (8.5)

Equation (8.5) can be expressed in vector form as

�( ) �1 2 1 2
2 2

– –
m m m m

G G
r r

= =F r r

   
�1 2

3
–

m m
G= r

r

where G is the universal gravitational constant,

�r  is the unit vector from m
1
 to m

2
 and r = r

2
 – r

1

as shown in Fig. 8.3.

The  gravitational force is attractive, i.e., the

force F is along – r. The force on point mass m
1

due to m
2
 is of course – F by Newton’s third law.

Thus, the gravitational force F
12

 on the body 1

due to 2 and F
21

 on the body 2 due to 1 are related

as F
12

 = – F
21

.

Before we can apply Eq. (8.5) to objects under

consideration, we have to be careful since the

law refers to point masses whereas we deal with

extended objects which have finite size. If we have

a collection of point masses, the force on any

one of them is the vector sum of the gravitational

forces exerted by the other point masses as

shown in Fig 8.4.

Fig. 8.4 Gravitational force on point mass m
1
 is the

vector sum of the gravitational forces exerted

by m
2
, m

3
 and m

4
.

The total force on m
1
 is

2 1
1 2

21

Gm m

r
=F � 3 1

21 2
31

Gm m

r
+r  

� �4 1
31 412

41

Gm m

r
+r r

Example 8.2  Three equal masses of m kg
each are fixed at the vertices of an
equilateral triangle ABC.
(a) What is the force acting on a mass 2m

placed at the centroid G of the triangle?
(b) What is the force if the mass at the
vertex A is doubled ?
      Take AG = BG = CG = 1 m (see Fig. 8.5)

Answer  (a) The angle between GC and the

positive x-axis is 30° and so is the angle between

GB and the negative x-axis. The individual forces

in vector notation are

Fig. 8.3 Gravitational force on m
1
 due to m

2
 is along

r where the vector r is (r
2
– r

1
).

O

2018-19



188 PHYSICS

(b) Now if the mass at vertex A is doubled
then

t

For the gravitational force between an extended

object (like the earth) and a point mass, Eq. (8.5) is not

directly applicable. Each point mass in the extended

object will exert a force on the given point mass and

these force will not all be in the same direction. We

have to add up these forces vectorially  for all the point

masses in the extended object to get the total force.

This is easily done using calculus. For two special

cases, a  simple law results when you do that :

(1) The force of attraction between a hollow
spherical shell of uniform density and a

point mass situated outside is just as if

the entire mass of the shell is
concentrated at the centre of the shell.

Qualitatively this can be understood as

follows: Gravitational forces caused by the

various regions of the shell have components

along the line joining the point mass to the

centre as well as along a direction

prependicular to this line. The components

prependicular to this line cancel out when

summing over all regions of the shell leaving

only a resultant force along the line joining

the point to the centre. The magnitude of

this force works out to be as stated above.

Newton’s Principia

Kepler had formulated his third law by 1619. The announcement of the underlying universal law of
gravitation came about seventy years later with the publication in 1687 of Newton’s masterpiece
Philosophiae Naturalis Principia Mathematica, often simply called the Principia.

  Around 1685, Edmund Halley (after whom the famous Halley’s comet is named), came to visit
Newton at Cambridge and asked him about the nature of the trajectory of a body moving under the
influence of an inverse square law. Without hesitation Newton replied that it had to be an ellipse,
and further that he had worked it out long ago around 1665 when he was forced to retire to his farm
house from Cambridge on account of a plague outbreak. Unfortunately, Newton had lost his papers.
Halley prevailed upon Newton to produce his work in book form and agreed to bear the cost of
publication. Newton accomplished this feat in eighteen months of superhuman effort. The Principia
is a singular scientific masterpiece and in the words of Lagrange it is “the greatest production of the
human mind.” The Indian born astrophysicist and Nobel laureate S. Chandrasekhar spent ten years
writing a treatise on the Principia. His book, Newton’s Principia for the Common Reader brings
into sharp focus the beauty, clarity and breath taking economy of Newton’s methods.

Fig. 8.5 Three equal masses are placed at the three

vertices of the ∆ ABC. A mass 2m is placed

at the centroid G.

( )
GA

2 ˆ
1

Gm m
=F j

( ) ( )GB

2 ˆ ˆcos 30 sin 30
1

Gm m ο ο= − −F  i j 

( ) ( )GC

2 ˆ ˆcos 30 sin 30
1

Gm m ο ο= + −F  i j 

From the principle of superposition and the law
of vector addition, the resultant gravitational
force FR on (2m) is

 FR  =  FGA + FGB + FGC

 ( )οο−−+= 30 sinˆ30 cosˆ2  ̂2   22
R  j ij F GmGm

              ( ) 030 sinˆ30 cosˆ2 2 =−+ οο  j i Gm

Alternatively, one expects on the basis of
symmetry that the resultant force ought to be
zero.
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(2) The force of attraction due to a hollow

spherical shell of uniform density, on a

point mass situated inside it is zero.

Qualitatively, we can again understand this

result. Various regions of the spherical shell

attract the point mass inside it in various

directions. These forces cancel each other

completely.

8.4  THE GRAVITATIONAL CONSTANT

The value of the gravitational constant G

entering the Universal law of gravitation  can be

determined experimentally and this was first

done by English scientist Henry Cavendish in

1798. The apparatus used by him is

schematically shown in figure.8.6

Fig. 8.6 Schematic drawing of Cavendish’s

experiment. S
1
 and S

2
 are large spheres

which are kept on either side (shown shades)

of the masses at A and B. When the big

spheres are taken to the other side of the

masses (shown by dotted circles), the bar

AB rotates a little since the torque reverses

direction. The angle of rotation can be

measured experimentally.

The bar AB has two small lead spheres

attached at its ends.  The bar is suspended from

a rigid support by a fine wire.  Two large lead

spheres are brought close to the small ones but

on opposite sides as shown.  The big spheres

attract the nearby small ones by equal and

opposite force as shown.  There is no net force

on the bar but only a torque which is clearly

equal to F times the length of the bar,where F is

the force of attraction between a big sphere and

its neighbouring small sphere.  Due to this

torque, the suspended wire  gets twisted till such

time as the restoring torque of the wire equals

the gravitational torque .  If θ is the angle of twist

of the suspended wire, the restoring torque is

proportional to θ, equal to τθ. Where τ is the

restoring couple per unit angle of twist. τ can be

measured independently e.g. by applying a

known torque and measuring the angle of twist.

The gravitational force between the spherical

balls is the same as if their masses are

concentrated at their centres.  Thus if d is the

separation between the centres of the big and

its neighbouring small ball, M and m their

masses, the gravitational force between the big

sphere and its neighouring small ball is.

2

Mm
F G

d
= (8.6)

If   L  is the length of  the bar AB , then the
torque arising out of F  is  F  multiplied by L. At
equilibrium, this is equal to the restoring torque
and hence

2

Mm
G L

d
τ θ= (8.7)

Observation of θ thus enables one to

calculate G from this equation.
Since Cavendish’s  experiment, the

measurement of G has been refined and the
currently accepted value is

G = 6.67×10-11  N m2/kg2 (8.8)

8.5 ACCELERATION DUE TO GRAVITY OF
THE EARTH

The earth can be imagined to be a sphere made

of a large number of concentric spherical shells

with the smallest one at the centre and the

largest one at its surface.  A point outside the

earth  is obviously outside all the shells.  Thus,

all the shells exert a gravitational force at the

point outside just as if their masses are

concentrated at their common centre according

to the result stated in section 8.3. The total mass

of all the shells combined is just the mass of the

earth.  Hence, at a point outside the earth, the

gravitational force is just as if its entire mass of

the earth is concentrated at its centre.

For a point inside the earth, the situation

is different.  This is illustrated in Fig. 8.7.
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Fig. 8.7 The mass m is in a mine located at a depth

d below the surface of the Earth of mass

ME and radius RE. We treat the Earth to be

spherically symmetric.

Again consider the earth  to be made up of
concentric shells as before and a point mass m
situated at a distance r from the centre.  The
point  P lies outside the sphere of radius r.  For
the shells of radius greater than r, the point P
lies inside.  Hence according to result stated in
the last section, they exert no gravitational force

on mass m kept at P.  The shells with radius ≤ r

make up a sphere of radius r for which the point
P lies on the surface.  This smaller sphere
therefore exerts a force on a mass m at P as if
its mass M

r 
is concentrated at the centre.  Thus

the force on the mass m at P has a magnitude

r

2

( )Gm M
F

r
= (8.9)

We assume that the entire earth is of uniform

density and hence its mass is 
3

E

4

3
EM R

π
ρ=

where M
E 
is the mass of the earth R

E
 is its radius

and ρ is the density.  On the other hand the

mass of the sphere M
r 
of radius r is 

34

3
r

π
ρ  and

hence

E

3
E

G m M
r

R
= (8.10)

If the mass m is situated on the surface of
earth, then  r = R

E
 and the gravitational force on

it is, from Eq. (8.10)

2

E

E

M m
F G

R
= (8.11)

The acceleration experienced by the mass m,

which is usually denoted by the symbol g is

related to F by Newton’s 2nd law by relation

F = mg. Thus

2

E

E

GMF
g

m R
= = (8.12)

Acceleration g is readily measurable.  R
E 
is a

known quantity.  The measurement of G by

Cavendish’s experiment (or otherwise), combined

with knowledge of g and R
E
 enables one to

estimate M
E
 from Eq. (8.12).  This is the reason

why there is a popular statement regarding

Cavendish : “Cavendish weighed the earth”.

8.6 ACCELERATION DUE TO GRAVITY

BELOW AND ABOVE THE SURFACE OF

EARTH

Consider a point mass m at a height h above the

surface of the earth as shown in Fig. 8.8(a).  The

radius of the earth is denoted by  R
E 
. Since this

point is outside the earth,

Fig. 8.8 (a) g at a height h above the surface of the

earth.

its distance from the centre of the earth is  (R
E 
+

h ).  If   F (h) denoted the magnitude of the  force

on the point mass m , we get from  Eq. (8.5) :

2
( )

( )
E

E

GM m
F h

R h
=

+
(8.13)

The acceleration experienced by the point

mass is ( )/ ( )F h m g h≡ and we get

M r
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2

( )
( ) .

( )
E

E

GMF h
g h

m R h
= =

+ (8.14)

This is clearly less than the value of g on the

surface of earth : 2
.E

E

GM
g

R
=  For ,Eh R<< we can

expand the RHS of Eq. (8.14) :

( )
2

2 2
( ) 1 /

(1 / )
E

E

E E

GM
g h g h R

R h R

−
= = +

+

For 1
E

h

R
<< , using binomial expression,

g h g
h

RE

( ) ≅ −






1

2
. (8.15)

Equation (8.15) thus tells us that for small
heights h above the value of g decreases by a

factor (1 2 / ).Eh R−

Now, consider a point mass m at a depth d
below the surface of the earth (Fig. 8.8(b)), so
that its distance from the centre of the earth is

( )ER d−  as shown in the figure.   The earth can

be thought of as being composed of a smaller
sphere of radius  (R

E 
 – d )  and a spherical shell

of thickness d.  The force on m due to the outer
shell of thickness  d is zero because the result
quoted in the previous section. As far as the
smaller  sphere of radius  ( R

E 
 – d  ) is concerned,

the point mass is outside it and hence according
to the result quoted earlier, the force due to this
smaller sphere is just as if the entire mass of
the smaller sphere is concentrated at the centre.

If M
s  
is the mass of the smaller sphere, then,

M
s
/M

E 
= (

 
R

E 
– d)3  / R

E
3 ( 8.16)

Since  mass of a sphere is proportional to be

cube of its radius.

Fig. 8.8 (b) g at a depth d. In this case only the

smaller sphere of radius (R
E
–d)

contributes to g.

Thus the force on the point mass is

F (d)  =   G  M
s 
 m  /  (R

E  
– d ) 2 (8.17)

Substituting for  M
s 
 from above , we get

F (d)   =  G  M
E
 m ( R

E
 – d ) /  R

E 
3 (8.18)

and hence the acceleration due to gravity at
a depth d,

g(d) = 
( )F d

m
is

3

( )
( ) ( )E

E

E

GMF d
g d R d

m R
= = −

(1 / )E
E

E

R d
g g d R

R

−
= = − (8.19)

Thus, as we go down below earth’s surface,
the acceleration due gravity decreases by a factor

(1 / ).Ed R− The remarkable thing about

acceleration due to earth’s gravity is that it is
maximum on its surface decreasing whether you
go up or down.

8.7  GRAVITATIONAL POTENTIAL ENERGY

We had discussed earlier the notion of potential

energy as being the energy stored in the body at

its given position.  If the position of the particle

changes on account of forces acting on it, then

the change in its potential energy is just the

amount of work done on the body by the force.

As we had discussed earlier, forces for which

the work done is independent of the path are

the conservative forces.

The force of gravity is a conservative force

and we can calculate the potential energy of a

body arising out of this force, called the

gravitational potential energy. Consider points

close to the surface of earth, at distances from

the surface much smaller than the radius of the

earth.  In such cases, the force of gravity is

practically a constant equal to mg, directed

towards the centre of the earth.  If we consider

a point at a height h
1
 from the surface of the

earth and another point vertically above it at a

height h
2
 from the surface, the work done in

lifting the particle of mass m from the first to

the second position is denoted by W
12

W
12

 = Force × displacement

      = mg (h
2
 – h

1
) (8.20)

M
s M

E
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If we associate a potential energy W(h) at a
point at a height h above the surface such that

W(h) = mgh  + W
o

(8.21)

(where W
o
 = constant) ;

then it is clear that
W

12
 = W(h

2
)  – W(h

1
) (8.22)

The work done in moving the particle is just
the difference of potential energy between its
final and initial positions.Observe that the
constant W

o
 cancels out in Eq. (8.22).  Setting

h = 0 in the last equation, we get   W ( h = 0 ) =
W

o.
 .  h = 0 means points on the surface of the

earth. Thus,  W
o 
 is the  potential energy on the

surface of the earth.
If we consider points at arbitrary distance

from the surface of the earth, the result just
derived is not valid since the assumption that
the gravitational force mg is a constant is no
longer valid.  However, from our discussion we
know that a point outside the earth, the force of
gravitation on a particle directed towards the
centre of the earth is

2

EG M m
F

r
= (8.23)

where M
E
 = mass of earth, m = mass of the

particle and r its distance from the centre of the
earth.  If we now calculate the work done in
lifting a particle from r = r

1
 to r = r

2
 (r

2
 > r

1
) along

a vertical path, we get instead of Eq. (8.20)

W
G M m

r
r

r

r

12 2
1

2

= ∫ d

= − −






G M m

r r
E

1 1

2 1

(8.24)

In place of Eq. (8.21), we can thus associate
a potential energy W(r) at a distance r, such that

E
1( ) ,

G M m
W r W

r
= − + (8.25)

valid for r > R ,
so that once again W

12
 = W(r

2
) – W(r

1
).

Setting   r = infinity in the last equation, we get
W ( r = infinity ) =   W

1 
.   Thus,  W

1 
 is the

potential energy at infinity. One should note that
only the difference of potential energy between
two points has a definite meaning  from Eqs.
(8.22) and (8.24). One conventionally sets  W

1

equal to zero, so that the potential energy at a
point is just the amount of work done in
displacing the particle from infinity to that point.

We have  calculated the potential energy at
a point of a particle  due to gravitational forces
on it due to the earth and it is proportional to
the mass of the particle. The gravitational
potential due to the gravitational force of the
earth is defined as the potential energy of  a
particle of unit mass at that point. From the
earlier discussion, we learn that the gravitational
potential energy associated with two particles
of masses m

1
 and m

2
 separated by distance by a

distance r is given by

1 2–
Gm m

V
r

=  (if we choose V = 0 as r → ∞ )

It should be noted that an isolated system
of particles will have the total potential energy
that equals the sum of energies (given by the
above equation) for all possible pairs of its
constituent particles. This is an example of the
application of the superposition principle.

Example 8.3  Find the potential energy of
a system of four particles placed at the
vertices of a square of side l. Also obtain
the potential at the centre of the square.

Answer   Consider four masses each of mass m
at the corners of a square of side l ; See Fig. 8.9.
We have four mass pairs at distance l and two

diagonal pairs at distance 2 l

Hence,

2 2G  
( )   4   2 

2 

m G m
W r

l l
= − −

Fig. 8.9
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l

mG

l

mG 22  
 5.41   

2

1
  2 

  2
  −=








+−=

The gravitational potential at the centre of

the square  ( )r 2 l / 2=  is

l

mG 
2rU

 
 4   )( −=

. t

8.8  ESCAPE SPEED

If a stone is thrown by hand, we see it falls back
to the earth. Of course using machines we can
shoot an object with much greater speeds and
with greater and greater initial speed, the object
scales higher and higher heights. A natural
query that arises in our mind is the following:
‘can we throw an object with such high initial
speeds that it does not fall back to the earth?’

The principle of conservation of energy helps
us to answer this question. Suppose the object
did reach infinity and that its speed there was
V

f
. The energy of an object is the sum of potential

and kinetic energy. As before W
1
 denotes that

gravitational potential energy of the object at
infinity. The total energy of the projectile at
infinity then is

2

1( )
2

fmV
E W∞ = + (8.26)

If the object was thrown initially with a speed
V

i
 from a point at a distance (h+R

E
) from the

centre of the earth (R
E
 = radius of the earth), its

energy initially was

2
1

1
( ) –

2 ( )

E

E i

E

GmM
E h R mV W

h R
+ = +

+
(8.27)

By the principle of energy conservation
Eqs. (8.26) and (8.27) must be equal. Hence

22

–
2 ( ) 2

fi E

E

mVmV GmM

h R
=

+
(8.28)

The R.H.S. is a positive quantity with a
minimum value zero hence so must be the L.H.S.
Thus, an object can reach infinity as long as V

i

is such that

2

– 0
2 ( )

i E

E

mV GmM

h R
≥

+
(8.29)

The minimum value of V
i
 corresponds to the

case when the L.H.S. of  Eq. (8.29) equals zero.

Thus, the minimum speed required for an object
to reach infinity (i.e. escape from the earth)
corresponds to

( )2

min

1

2
E

i

E

GmM
m V

h R
=

+ (8.30)

If the object is thrown from the surface of
the earth, h = 0, and we get

( )
min

2 E
i

E

GM
V

R
= (8.31)

Using the relation 2/E Eg GM R= , we get

( )
min

2i EV gR= (8.32)

Using the value of g and R
E
, numerically

(V
i
)
min

≈11.2 km/s. This is called the escape
speed, sometimes loosely called the escape
velocity.

Equation (8.32) applies equally well to an
object thrown from the surface of the moon with
g replaced by the acceleration due to Moon’s
gravity on its surface and r

E
 replaced by the

radius of the moon. Both are smaller than their
values on earth and the escape speed for the
moon turns out to be 2.3 km/s, about five times
smaller. This is the reason that moon has no
atmosphere. Gas molecules if formed on the
surface of the moon having velocities larger than
this will escape the gravitational pull of the
moon.

Example 8.4  Two uniform solid spheres
of equal radii R, but mass M and 4 M have
a centre to centre separation 6 R, as shown
in Fig. 8.10. The two spheres are held fixed.
A projectile of mass m is projected from
the surface of the sphere of mass M directly
towards the centre of the second sphere.
Obtain an expression for the minimum
speed v of the projectile so that it reaches
the surface of the second sphere.

Fig. 8.10

Answer  The projectile is acted upon by two
mutually opposing gravitational forces of the two
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spheres. The neutral point N (see Fig. 8.10) is
defined as the position where the two forces
cancel each other exactly. If ON = r, we have

( )22 rR6

m M G

r

m M G

−
=

 4
  

(6R – r)2 = 4r2

6R – r = ±2r

r = 2R   or – 6R.

The neutral point r =  – 6R does not concern
us in this example. Thus ON = r = 2R. It is
sufficient to project the particle with a speed
which would enable it to reach N. Thereafter,
the greater gravitational pull of 4M would
suffice. The mechanical energy at the surface
of M is

 R

mM G

R

m M G
vmE 2

i
 5

  4
       

2

1
  −−= .

At the neutral point N, the speed approaches
zero. The mechanical energy at N is purely
potential.

 R

m M G

R

m M G
EN

 4

 4
  

 2
   −−= .

From the principle of conservation of
mechanical energy

1

2

4

2
v

GM

R

GM

R

GM

R

GM

R 

2
− − = − −

5
or









−=

2

1
  

5

4 2
  2

R

M G
v

2/1

 5

  3
  








=

R

MG
v t

A point to note is that the speed of the projectile
is zero at N, but is nonzero when it strikes the
heavier sphere 4 M. The calculation of this speed
is left as an exercise to the students.

8.9  EARTH SATELLITES

Earth satellites are objects which revolve around
the earth.  Their motion is very similar to the
motion of planets around the Sun and hence
Kepler’s laws of planetary motion are equally
applicable to them.  In particular, their orbits
around the earth are circular or elliptic.  Moon
is the only natural satellite of the earth with a
near circular orbit with a time period of
approximately 27.3 days which is also roughly
equal to the rotational period of the moon about

its own axis.  Since, 1957, advances in
technology have enabled many countries
including India to launch artificial earth
satellites for practical use in fields like
telecommunication, geophysics and
meteorology.

We will consider a satellite in a circular orbit
of a distance (R

E
 + h ) from the centre of the earth,

where R
E
 = radius of the earth. If m is the mass

of the satellite and V its speed, the centripetal
force required for this orbit is

F(centripetal) = 

2

( )E

mV

R h+
(8.33)

directed towards the centre.  This centripetal force
is provided by the gravitational force, which is

F(gravitation) = 2( )
E

E

G m M

R h+
(8.34)

where M
E
 is the mass of the earth.

Equating R.H.S of Eqs. (8.33) and (8.34) and
cancelling out m, we get

2

( )
E

E

G M
V

R h
=

+
(8.35)

Thus V decreases as h increases.  From
equation (8.35),the speed V  for  h = 0  is

2 ( 0) / E EV h GM R gR= = = (8.36)

where we have used the relation

g = 2/ EGM R . In every orbit, the satellite

traverses a distance 2π(R
E 
+ h) with speed V.  Its

time period T therefore is
3 /22 ( ) 2 ( )E E

E

R h R h
T

V G M

π π+ +
= = (8.37)

on substitution of value of V from Eq. (8.35).
Squaring both sides  of  Eq. (8.37), we get

T 2  = k  ( R
E 
+ h)3   (where k = 4 π2 / GM

E
)    (8.38)

which is Kepler’s law of periods, as applied to
motion of satellites around the earth. For a
satellite very close to the surface of earth h can
be neglected in comparison to R

E
 in Eq. (8.38).

Hence, for such satellites, T is T
o
, where

0 2 /ET R gπ= (8.39)

If we substitute the numerical values
g �  9.8 m s-2 and R

E
 = 6400 km., we get

6

0

6.4 10
2

9.8
T π

×
=  s

Which is approximately 85 minutes.
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t

tExample 8.5  The planet Mars has two
moons, phobos and delmos. (i) phobos has
a period 7 hours, 39 minutes and an orbital
radius of 9.4 ×103 km. Calculate the mass
of mars. (ii) Assume that earth and mars
move in circular orbits around the sun,
with the martian orbit being 1.52 times
the orbital radius of  the earth. What is
the length of the martian year in days ?

Answer   (i) We employ Eq. (8.38) with the sun’s
mass replaced by the martian mass Mm

T
GM

R
2

m

=
4

2
3π

Mm
G

R

T
=

4
2 3

2

π

( ) ( )

( )
=

× × ×

× × ×

4 3.14

6.67 10 459 60
-11 2

2 3 18
9 4 10.

( ) ( )

( )
M

4 3.14

6.67 4.59 6 10
2 -5m =

× × ×

× × ×

2 3 18
9 4 10.

= 6.48 × 1023 kg.
(ii) Once again Kepler’s third law comes to our

aid,

T

T

R

R

M

2

E

2

MS

3

ES

3
=

where RMS is the mars -sun distance and RES is
the earth-sun distance.

∴ TM  = (1.52)3/2 × 365
       = 684 days

We note that the orbits of all planets except
Mercury, Mars and Pluto* are very close to
being circular. For example, the ratio of the
semi-minor to semi-major axis for our Earth
is, b/a = 0.99986. t

Example 8.6   Weighing the Earth : You
are given the following data: g = 9.81 ms–2,
RE = 6.37×106 m, the distance to the moon
R = 3.84×108 m and the time period of the
moon’s revolution is 27.3 days. Obtain the
mass of the Earth ME in two different ways.

Answer From Eq. (8.12) we have

G

R g
M

2
E

E   =

( )
=

× ×

×

9.81 6.37 10

6.67 10

6 2

-11

 = 5.97× 1024 kg.
The moon is a satellite of the Earth. From

the derivation of Kepler’s third law [see Eq.
(8.38)]

EM G

R
T

32
2 4

  
π

=

2

324
  

T G

R
ME

π
=

( )

( )
=

× × × ×

× × × × ×

4 3.14 3.14 3.84 10

6.67 10 27.3 24 60 60

3 24

-11 2

= ×6.02 10
24

kg

Both methods yield almost the same answer,
the difference between them being less than 1%.

                                                                              t

Example 8.7  Express the constant k of
Eq. (8.38) in days and kilometres. Given
k = 10–13 s2 m–3. The moon is at a distance
of 3.84 × 105 km  from the earth. Obtain its
time-period of revolution in days.

Answer Given
k = 10–13 s2 m–3

= 
( ) ( )

10
1

d
1

km

−

× ×



























13

2

2

3 3
24 60 60 1 1000

 
/

= 1.33 ×10–14 d2  km–3

Using Eq. (8.38) and the given value of k,
the time period of the moon is

T 2 = (1.33 × 10-14)(3.84 × 105)3

T   = 27.3 d t

Note that Eq. (8.38) also holds for elliptical
orbits if we replace (RE+h) by the semi-major
axis of the ellipse. The earth will then be at one
of the foci of this ellipse.

8.10  ENERGY OF AN ORBITING SATELLITE

Using Eq. (8.35), the kinetic energy of the satellite
in a circular orbit with speed v is

21

2
K E m v=i

2( )
E

E

Gm M

R h
=

+ , (8.40)

* Refer to information given in the Box on Page 182
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t

Considering gravitational potential energy at
infinity to be zero, the potential energy at distance
(R

e

+h) from the centre of the earth is

.
( )

E

E

G m M
P E

R h
= −

+ (8.41)

The K.E is positive whereas the P.E is
negative. However, in magnitude the K.E. is half
the P.E, so that the total E is

. .
2( )

E

E

G m M
E K E P E

R h
= + = −

+ (8.42)

The total energy of an circularly orbiting
satellite is thus negative, with the potential
energy being negative but twice is magnitude of
the positive kinetic energy.

When the orbit of a satellite becomes
elliptic, both the K.E. and P.E. vary from point
to point.  The total energy which remains
constant is negative as in the circular orbit case.
This is what we expect, since as we have
discussed before if the total energy is positive or
zero, the object escapes to infinity.   Satellites
are always at finite distance from the earth and
hence their energies cannot be positive or zero.

Example 8.8  A 400 kg satellite is in a circular
orbit of radius 2RE about the Earth. How much
energy is required to transfer it to a circular
orbit of radius 4RE? What are the changes in
the kinetic and potential energies ?

Answer  Initially,

E

E
i

R

mMG
E

 4

  
   −=

While finally

E

E
f

R

mMG
E

 8

  
   −=

The change in the total energy is
∆E = Ef  – Ei

8

 
  

 8

  
 

2
E

E

E

E

E R m

R

MG

R

mMG













==

J10  13.3  
8

10  37.6  400  81.9
  

8

  
   9

6

×=
×××

==∆ ERmg
E

The kinetic energy is reduced and it mimics
∆E, namely,  ∆K = Kf – Ki = – 3.13 × 109 J.

The change in potential energy is twice the
change in the total energy, namely

∆V = Vf  – Vi = – 6.25 × 109 J t

8.11 GEOSTATIONARY AND POLAR
SATELLITES

An interesting phenomenon arises if in we
arrange the value of (R

E
+ h)  such that T in

Eq. (8.37) becomes equal to 24 hours.  If the
circular orbit is in the equatorial plane of the
earth, such a satellite, having the same period
as the period of rotation of the earth about its
own axis would appear stationery viewed from
a point on earth.  The (R

E

 + h) for this purpose
works out to be large as compared to R

E

 :

1/32

24
E

E

T G M
R h

π

 
+ =  

 
(8.43)

and for T = 24 hours, h works out to be 35800 km.
which is  much larger than R

E
.  Satellites in a

circular orbits around the earth in the
equatorial plane with T = 24 hours are called
Geostationery Satellites. Clearly, since the earth
rotates with the same period, the satellite would
appear fixed from any point on earth. It takes
very powerful rockets to throw up a satellite to
such large heights above the earth but this has
been done in view of the several benefits of many
practical applications.

Fig. 8.11 A Polar satellite. A strip on earth’s surface

(shown shaded) is visible from the satellite

during one cycle. For the next revolution of

the satellite, the earth has rotated a little

on its axis so that an adjacent strip becomes

visible.

It is known that electromagnetic waves above
a certain frequency are not reflected from
ionosphere. Radio waves used for radio
broadcast which are in the frequency range 2
MHz to 10 MHz, are below the critical frequency.
They are therefore reflected by the ionosphere.
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Thus radio waves broadcast from an antenna

can be received at points far away where the

direct wave fail to reach on account of the

curvature of the earth.  Waves used in television

broadcast or other forms of communication have

much higher frequencies and thus cannot be

received beyond the line of sight.  A Geostationery

satellite, appearing fixed above the broadcasting

station can however receive these signals and

broadcast them back to a wide area on earth.

The INSAT  group of satellites sent up by India

are one such group of Geostationary satellites

widely used for telecommunications in India.

Another class of satellites are called the Polar

satellites (Fig. 8.11).  These are low altitude (h l

500 to 800 km) satellites, but they go around

the poles of the earth in a north-south direction

whereas the earth rotates around its axis in an

east-west direction. Since its time period is

around 100 minutes it crosses any altitude many

times a day.  However, since its height h above

the earth is about  500-800 km, a camera fixed

on it can view only  small strips of the earth in

one orbit. Adjacent strips are viewed in the next

orbit, so that in effect the whole earth can be

viewed strip by strip during the entire day.  These

satellites can view polar and equatorial regions

at close distances with good resolution.
Information gathered from such satellites
is extremely useful for remote sensing,
meterology  as well as for environmental studies
of the earth.

8.12  WEIGHTLESSNESS

Weight of an object is the force with which the
earth attracts it. We are conscious of our own
weight when we stand on a surface, since the
surface exerts a force opposite to our weight to
keep us at rest. The same principle holds good
when we measure the weight of an object by a
spring balance hung from a fixed point e.g. the
ceiling. The object would fall down unless it is
subject to a force opposite to gravity.  This is
exactly what the spring exerts on the object. This
is because  the spring is  pulled down a little by
the gravitational pull of the object and in turn the
spring exerts a force on the object vertically upwards.

Now, imagine that the top end of the balance
is no longer held fixed to the top ceiling of the
room.  Both ends of the spring as well as the
object move with identical acceleration g.  The
spring is not stretched and does not exert any
upward force on the object which is moving down
with acceleration g due to gravity.  The reading

     India’s Leap into Space
India started its space programme in 1962 when Indian National Committee for Space Research was set
up by the Government of India which was superseded by the Indian Space Research Organisation (ISRO)
in 1969. ISRO identified the role and importance of space technology in nation’s development and
bringing space to the service of the common man. India launched its first low orbit satellite Aryabhata in
1975, for which the launch vehicle was provided by the erstwhile Soviet Union. ISRO started employing its
indigenous launching vehicle in 1979 by sending Rohini series of satellites into space from its main
launch site at Satish Dhawan Space Center, Sriharikota, Andhra Pradesh. The tremendous progress in
India’s space programme has made ISRO one of the six largest space agencies in the world. ISRO
develops and delivers application specific satellite products and tools for broadcasts, communication,
weather forecasts, disaster management tools, Geographic Information System, cartography, navigation,
telemedicine, dedicated distance education satellite etc. In order to achieve complete self-reliance in
these applications, cost effective and reliable Polar Satellite Launch Vehicle (PSLV) was developed in
early 1990s. PSLV has thus become a favoured carrier for satellites of various countries, promoting
unprecedented international collaboration. In 2001, the Geosynchronous Satellite Launch Vehicle (GSLV)
was developed for launching heavier and more demanding Geosynchronous communication satellites.
Various research centers and autonomous institutions for remote sensing, astronomy and astrophysics,
atmospheric sciences and space research are functioning under the aegis of the Department of Space,
Government of India. Success of lunar (Chandrayaan) and inter planetary (Mangalyaan) missions along
with other scientific projects has been landmark achievements of ISRO. Future endeavors of ISRO in-
clude human space flight projects, the development of heavy lift launchers, reusable launch vehicles,
semi-cryogenic engines, single and two stage to orbit (SSTO and TSTO) vehicles, development and use of
composite materials for space application etc. In 1984 Rakesh Sharma became the first Indian to go into

outer space aboard in a USSR spaceship. (www.isro.gov.in)
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SUMMARY

1. Newton’s law of universal gravitation states that the gravitational force of attraction
between any two particles of masses m1 and m2 separated by a distance r has the magnitude

F G
m m

r
2

=
1 2

where G is the universal gravitational constant, which has the value  6.672 ×10–11 N m2 kg–2.
2. If we have to find the resultant gravitational force acting on the particle m due to a

number of masses M1, M2, ….Mn etc. we use the principle of superposition. Let F1, F2, ….Fn

be the individual forces due to M1, M2, ….Mn, each given by the law of gravitation. From
the principle of superposition each force acts independently  and uninfluenced by the
other bodies. The resultant force FR is then found by vector addition

FR  =  F1 + F2 + ……+ Fn   =  F
i

i

n

=

∑
1

where the symbol ‘Σ’ stands for summation.

3. Kepler’s laws of planetary motion state that
(a) All planets move in elliptical orbits with the Sun at one of the focal points
(b) The radius vector drawn from the Sun to a planet sweeps out equal areas in equal

time intervals. This follows from the fact that the force of gravitation on the planet is
central and hence angular momentum is conserved.

(c) The square of the orbital period of a planet is proportional to the cube of the   semi-
major axis of the elliptical orbit of the planet

The period T and radius R of the circular orbit of a planet about the Sun are related
by

3
2

2 4
  R

M G
T

s












 π
=

where Ms is the mass of the Sun. Most planets have nearly circular orbits about the
Sun. For elliptical orbits, the above equation is valid if R is replaced by the semi-major
axis, a.

4. The acceleration due to gravity.
(a) at a height h above the earth’s surface

( )
2

( )  
  

E

E

G M
g h

R h
=

+

≈ −






 1  

2
2

G M

R

h

R

E

E E

   for h << RE

g h g( )  1  
2

   = ( ) −






( ) =0

2

h

R
g

G M

RE

E

E

    where 0

recorded in the spring balance is zero since the
spring is not stretched at all.  If the object were
a human being, he or she will not feel his weight
since there is no upward force on him.  Thus,
when an object is in free fall, it is weightless and
this phenomenon is usually called the
phenomenon of weightlessness.

In a satellite around the earth, every part
and parcel of the satellite has an acceleration
towards the centre of the earth which is exactly

the value of earth’s acceleration due to gravity
at that position. Thus in the satellite everything
inside it is in a state of free fall.  This is just as if
we were falling towards the earth from a height.
Thus, in a manned satellite, people inside
experience no gravity.  Gravity for us defines the
vertical direction and thus for them there are no
horizontal or vertical directions, all directions are
the same. Pictures of astronauts floating in a
satellite show this fact.
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(b) at depth d below the earth’s surface is

g gd
G M

R

d

R

d

R

E

E E E

( ) = −






= ( ) −







  

 
1   1

2
0

 5. The gravitational force is a conservative force, and therefore a potential energy function
can be defined. The gravitational potential energy associated with two particles separated
by a distance r is given by

r

mmG
V 21  

   −=

where V is taken to be zero at r → ∞. The total potential energy for a system of particles
is the sum of energies for all pairs of particles, with each pair represented by a term of
the form given by above equation. This prescription follows from the principle of
superposition.

6. If an isolated system consists of a particle of mass m moving with a speed v in the
vicinity of a massive body of mass M, the total mechanical energy of the particle is given by

r

m M G
vmE    

2

1
  2−=

That is, the total mechanical energy is the sum of the kinetic and potential energies.
The total energy is a constant of motion.

7. If m moves in a circular orbit of radius a about M, where M >> m, the total energy of the system is

a

mMG
E

2

  
   −=

with the choice of the arbitrary constant in the potential energy given in the point 5.,
above. The total energy is negative for any bound system, that is, one in which the orbit
is closed, such as an elliptical orbit. The kinetic and potential energies are

a

mMG
K

2

  
  =

a

m M G
V    −=

8. The escape speed from the surface of the earth is

E

E
e

R

M G
v

 2
  = = 2 EgR

and has a value of 11.2 km s–1.
9. If a particle is outside a uniform spherical shell or solid sphere with a spherically symmetric

internal mass distribution, the sphere attracts the particle as though the mass of the
sphere or shell were concentrated at the centre of the sphere.

10. If a particle is inside a uniform spherical shell, the gravitational force on the particle is zero.
If a particle is inside a homogeneous solid sphere, the force on the particle acts toward the
centre of the sphere. This force is exerted by the spherical mass interior to the particle.

11. A geostationary (geosynchronous communication) satellite moves in a circular orbit in
the equatorial plane at a approximate distance of 4.22 × 104 km from the earth’s centre.
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POINTS TO PONDER

1. In considering motion of an object under the gravitational influence of another object
the following quantities are conserved:
(a)  Angular momentum
(b)  Total mechanical energy
Linear momentum is not conserved

2. Angular momentum conservation leads to Kepler’s second law. However, it is not special
to the inverse square law of gravitation. It holds for any central force.

3. In Kepler’s third law (see Eq. (8.1) and  T2 = KS R
3. The constant KS is the same for all

planets in circular orbits. This applies to satellites orbiting the Earth [(Eq. (8.38)].
4. An astronaut experiences weightlessness in a space satellite. This is not because the

gravitational force is small at that location in space. It is because both the astronaut
and the satellite are in “free fall” towards the Earth.

5. The gravitational potential energy associated with two particles separated by a distance
r is given by

V
G m m

r
= +– 1 2 constant

The constant can be given any value. The simplest choice is to take it to be zero. With
this choice

V
G m m

r
= – 1 2

This choice implies that V →  0 as r →  ∞.  Choosing location of zero of the gravitational
energy is the same as choosing the arbitrary constant in the potential energy. Note that
the gravitational force is not altered by the choice of this constant.

6. The total mechanical energy of an object is the sum of its kinetic energy (which is always
positive) and the potential energy. Relative to infinity (i.e. if we presume that the potential
energy of the object at infinity is zero), the gravitational potential energy of an object is
negative. The total energy of a satellite is negative.

7. The commonly encountered expression m g h for the potential energy is actually an
approximation to the difference in the gravitational potential energy discussed in the
point 6, above.

8. Although the gravitational force between two particles is central, the force between two
finite rigid bodies is not necessarily along the line joining their centre of mass. For a
spherically symmetric body however the force on a particle external to the body is as if
the mass is concentrated at the centre and this force is therefore central.

9. The gravitational force on a particle inside a spherical shell is zero. However, (unlike a
metallic shell which shields electrical forces) the shell does not shield other bodies outside
it from exerting gravitational forces on a particle inside. Gravitational shielding is not

possible.

EXERCISES
8.1 Answer the following :

(a) You can shield a charge from electrical forces by putting it inside a hollow conductor.
Can you shield a body from the gravitational influence of nearby matter by putting
it inside a hollow sphere or by some other means ?

(b) An astronaut inside a small space ship orbiting around the earth cannot detect
gravity. If the space station orbiting around the earth has a large size, can he hope
to detect gravity ?

(c) If you compare the gravitational force on the earth due to the sun to that due
to the moon, you would find that the Sun’s pull is greater than the moon’s pull.
(you can check this yourself using the data available in the succeeding exercises).
However, the tidal effect of the moon’s pull is greater than the tidal effect of sun.
Why ?
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8.2 Choose the correct alternative :
(a) Acceleration due to gravity increases/decreases with increasing altitude.
(b) Acceleration due to gravity increases/decreases with increasing depth (assume the

earth to be a sphere of uniform density).
(c) Acceleration due to gravity is independent of mass of the earth/mass of the body.
(d) The formula –G Mm(1/r2  – 1/r1)  is more/less accurate than the formula

mg(r2 – r1) for the difference of potential energy between two points r2 and r1 distance
away from the centre of the earth.

8.3 Suppose there existed a planet that went around the sun twice as fast as the earth.
What would be its orbital size as compared to that of the earth ?

8.4 Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius
of the orbit is 4.22 × 108 m. Show that the mass of Jupiter is about one-thousandth
that of the sun.

8.5 Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How
long will a star at a distance of 50,000 ly from the galactic centre take to complete one
revolution ? Take the diameter of the Milky Way to be 105 ly.

8.6 Choose the correct alternative:
(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite

is negative of its kinetic/potential energy.
(b) The energy required to launch an orbiting satellite out of earth’s gravitational

influence is more/less than the energy required to project a stationary object at
the same height (as the satellite) out of earth’s influence.

8.7 Does the escape speed of a body from the earth depend on (a) the mass of the body, (b)
the location from where it is projected, (c) the direction of projection, (d) the height of
the location from where the body is launched?

8.8 A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant (a)
linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential
energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when
it comes very close to the Sun.

8.9 Which of the following symptoms is likely to afflict an astronaut in space (a) swollen
feet, (b) swollen face, (c) headache, (d) orientational problem.

8.10 In the following two exercises, choose the correct answer from among the given ones:
The gravitational intensity at the centre of a hemispherical shell of uniform mass
density has the direction indicated by the arrow (see Fig 8.12) (i) a, (ii) b, (iii) c, (iv) 0.

Fig. 8.12

8.11 For the above problem, the direction of the gravitational intensity at an arbitrary
point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g.

8.12 A rocket is fired from the earth towards the sun. At what distance from the earth’s
centre is the gravitational force on the rocket zero ? Mass of the sun = 2×1030 kg,
mass of the earth = 6×1024 kg. Neglect the effect of other planets etc. (orbital radius =
1.5 × 1011 m).

8.13 How will you ‘weigh the sun’, that is estimate its mass? The mean orbital radius of
the earth around the sun is 1.5 × 108 km.

8.14 A saturn year is 29.5 times the earth year. How far is the saturn from the sun if the
earth is 1.50 × 108 km away from the sun ?

8.15 A body weighs 63 N on the surface of the earth. What is the gravitational force on it
due to the earth at a height equal to half the radius of the earth ?

8.16 Assuming the earth to be a sphere of uniform mass density, how much would a body
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weigh half way down to the centre of the earth if it weighed 250 N on the surface ?
8.17 A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far

from the earth does the rocket go before returning to the earth ?  Mass  of the earth
= 6.0 × 1024 kg; mean radius of the earth = 6.4 × 106 m; G = 6.67 × 10–11 N m2 kg–2.

8.18 The escape speed of a projectile on the earth’s surface is 11.2 km s–1. A body is
projected out with thrice this speed. What is the speed of the body far away from the
earth? Ignore the presence of the sun and other planets.

8.19 A satellite orbits the earth at a height of 400 km above the surface. How much
energy must be expended to rocket the satellite out of the earth’s gravitational
influence? Mass of the satellite = 200 kg; mass of the earth = 6.0×1024 kg;  radius  of
the earth = 6.4 × 106 m; G = 6.67 × 10–11 N m2 kg–2.

8.20 Two stars each of one solar mass (= 2×1030 kg) are approaching each other for a head
on collision. When they are a distance 109 km, their speeds are negligible. What is
the speed with which they collide ? The radius of each star is 104 km. Assume the
stars to remain undistorted until they collide. (Use the known value of G).

8.21 Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart
on a horizontal table. What is the gravitational force and potential at the mid point
of the line joining the centres of the spheres ? Is  an object placed at that point in
equilibrium? If so, is the equilibrium stable or unstable ?

Additional Exercises

8.22 As you have learnt in the text, a geostationary satellite orbits the earth at a height of
nearly 36,000 km from the surface of the earth. What is the potential due to earth’s
gravity at the site of this satellite ? (Take the potential energy at infinity to be zero).
Mass of the earth = 6.0×1024 kg, radius = 6400 km.

8.23 A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a
speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as
neutron stars. Certain stellar objects called pulsars belong to this category). Will an
object placed on its equator remain stuck to its surface due to gravity ? (mass of the
sun = 2×1030 kg).

8.24 A spaceship is stationed on Mars. How much energy must be expended on the
spaceship to launch it out of the solar system ? Mass of the space ship = 1000 kg;
mass of the sun = 2×1030 kg; mass of mars = 6.4×1023 kg; radius of mars = 3395 km;
radius of the orbit of mars = 2.28 ×108 km; G = 6.67×10-11 N m2 kg–2.

8.25 A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s–1. If 20%
of its initial energy is lost due to martian atmospheric resistance, how far will the
rocket go from the surface of mars before returning to it ? Mass of mars = 6.4×1023 kg;
radius of mars = 3395 km; G = 6.67×10-11  N m2 kg–2.

2018-19



GRAVITATION 203

APPENDIX 8.1 : LIST OF INDIAN SATELLITES

S.No. Name  Launch Date Launch Vehicle Application

1. Aryabhata Apr. 19, 1975 C-1 Intercosmosa Experimental

2. Bhaskara-I Jun. 07, 1979 C-1 Intercosmosa Earth Observation,
Experimental

3. Rohini Technology Payload (RTP) Aug. 10, 1979 SLV-3E1b Experimental

4. Rohini Satellite RS-1 Jul. 18, 1980 SLV-3E2b Experimental

5. Rohini Satellite RS-D1 May 31, 1981 SLV-3D1b Earth Observation

6. APPLE Jun. 19, 1981 Ariane -1(V-3)c Communication,
Experimental

7. Bhaskara-II Nov. 20, 1981 C-1 Intercosmosa Earth Observation,
Experimental

8. INSAT-1A Apr. 10, 1982 Deltad Communication

9. Rohini Satellite RS-D2 Apr. 17, 1983 SLV-3b Earth Observation

10. INSAT-1B Aug. 30, 1983 Shuttle [PAM-D]d Communication

11. SROSS-1 Mar. 24, 1987 ASLV-D1b Experimental

12. IRS-1A Mar. 17, 1988 Vostoke Earth Observation

13. SROSS-2 Jul. 13, 1988 ASLV-D2b Earth Observation,
Experimental

14. INSAT-1C Jul. 22, 1988 Ariane-3c Communication

15. INSAT-1D Jun. 12, 1990 Delta 4925d Communication

16. IRS-1B Aug. 29, 1991 Vostoke Earth Observation

17. SROSS-C May 20, 1992 ASLV-D3b Experimental

18. INSAT-2A Jul. 10, 1992 Ariane-44L H10c Communication

19. INSAT-2B Jul. 23, 1993 Ariane-44L H10+c Communication

20. IRS-1E Sep. 20, 1993 PSLV-D1b Earth Observation

21. SROSS-C2 May 04, 1994 ASLV-D4b Experimental

22. IRS-P2 Oct. 15, 1994 PSLV-D2b Earth Observation

23. INSAT-2C Dec. 07, 1995 Ariane-44L H10-3c Communication

24. IRS-1C Dec. 28, 1995 Molniyae Earth Observation

25. IRS-P3 Mar. 21, 1996 PSLV-D3/IRS-P3b Earth Observation

26. INSAT-2D Jun. 04, 1997 Ariane-44L H10-3c Communication

27. IRS-1D Sep. 29, 1997 PSLV-C1/IRS-1Db Earth Observation

28. INSAT-2E Apr. 03, 1999 Ariane-42P H10-3c Communication

29. Oceansat (IRS-P4) May 26, 1999 PSLV-C2/IRS-P4b Earth Observation

30. INSAT-3B Mar. 22, 2000 Ariane-5Gc Communication

31. GSAT-1 Apr. 18, 2001 GSLV-D1/GSAT-1b Communication

2018-19



204 PHYSICS

32. The Technology Experiment Oct. 22, 2001 PSLV-C3/TESb Earth Observation

Satellite (TES)

33. INSAT-3C Jan. 24, 2002 Ariane5-V147c Climate &
Environment,
Communication

34. KALPANA-1 Sep. 12, 2002 PSLV-C4/ Climate &
KALPANA-1b Environment,

Communication

35. INSAT-3A Apr. 10, 2003 Ariane5-V160c Climate &
Environment,
Communication

36. GSAT-2 May 08, 2003 GSLV-D2/GSAT-2b Communication

37. INSAT-3E Sep. 28, 2003 Ariane5-V162c Communication

38. IRS-P6 / RESOURCESAT-1 Oct. 17, 2003 PSLV-C5/ Earth Observation
RESOURCESAT-1b

39. EDUSAT Sep. 20, 2004 GSLV-F01/ Communication
EDUSAT(GSAT-3)b

40. HAMSAT May 05, 2005 PSLV-C6/ Communication
CARTOSAT-1/HAMSATb

41. CARTOSAT-1 May 05, 2005 PSLV-C6/ Earth Observation
CARTOSAT-1/HAMSATb

42. INSAT-4A Dec. 22, 2005 Ariane5-V169c Communication

43. INSAT-4C Jul. 10, 2006 GSLV-F02/INSAT-4Cb Communication

44. CARTOSAT-2 Jan. 10, 2007 PSLV-C7/CARTOSAT-2 Earth Observation
/SRE-1b

45. SRE-1 Jan. 10, 2007 PSLV-C7/CARTOSAT-2 Experimental
/SRE-1b

46. INSAT-4B Mar. 12, 2007 Ariane5c Communication

47. INSAT-4CR Sep. 02, 2007 GSLV-F04/INSAT-4 Communication
CRb

48. IMS-1 Apr. 28, 2008 PSLV-C9/ Earth Observation
CARTOSAT-2Ab

49. CARTOSAT - 2A Apr. 28, 2008 PSLV-C9/ Earth Observation
CARTOSAT-2Ab

50. Chandrayaan-1 Oct. 22, 2008 PSLV-C11b Planetary
Observation

51. RISAT-2 Apr. 20, 2009 PSLV-C12/RISAT-2b Earth Observation

52. ANUSAT Apr. 20, 2009 PSLV-C12/RISAT-2b University/
Academic Institute

53. Oceansat-2 Sep. 23, 2009 PSLV-C14/ Climate &
OCEANSAT-2b Environment, Earth

Observation

54. GSAT-4 Apr. 15, 2010 GSLV-D3 / GSAT-4b Communication

55. CARTOSAT-2B Jul. 12, 2010 PSLV-C15/ Earth Observation
CARTOSAT-2Bb
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56. STUDSAT Jul. 12, 2010 PSLV-C15/ University/
CARTOSAT-2Bb Academic Institute

57. GSAT-5P Dec. 25, 2010 GSLV-F06/GSAT-5Pb Communication

58. RESOURCESAT-2 Apr. 20, 2011 PSLV-C16/ Earth Observation
RESOURCESAT-2b

59. YOUTHSAT Apr. 20, 2011 PSLV-C16/ Student Satellite
RESOURCESAT-2b

60. GSAT-8 May 21, 2011 Ariane-5 VA-202c Communication,
Navigation

61. GSAT-12 Jul. 15, 2011 PSLV-C17/GSAT-12b Communication

62. Megha-Tropiques Oct. 12, 2011 PSLV-C18/Megha- Climate &
Tropiquesb Environment, Earth

Observation

63. SRMSat Oct. 12, 2011 PSLV-C18/ University/
Megha-Tropiquesb Academic Institute

64. Jugnu Oct. 12, 2011 PSLV-C18/ University/Academic
Megha-Tropiquesb Institute

65. RISAT-1 Apr. 26, 2012 PSLV-C19/RISAT-1b Earth Observation

66. GSAT-10 Sep. 29, 2012 Ariane-5 VA-209c Communication,
Navigation

67. SARAL Feb. 25, 2013 PSLV-C20/SARALb Climate &
Environment, Earth
Observation

68. IRNSS-1A Jul. 01, 2013 PSLV-C22/IRNSS-1Ab Navigation

69. INSAT-3D Jul. 26, 2013 Ariane-5 VA-214c Climate &
Environment,
Disaster
Management System

70. GSAT-7 Aug. 30, 2013 Ariane-5 VA-215c Communication

71. Mars Orbiter Mission Spacecraft Nov. 05, 2013 PSLV-C25b Planetary
(Mangalyaan-1) Observation

72. GSAT-14 Jan. 05, 2014 GSLV-D5/GSAT-14b Communication

73. IRNSS-1B Apr. 04, 2014 PSLV-C24/IRNSS-1Bb Navigation

74. IRNSS-1C Oct. 16, 2014 PSLV-C26/IRNSS-1Cb Navigation

75. GSAT-16 Dec. 07, 2014 Ariane-5 VA-221c Communication

76. Crew module Atmospheric Dec. 18, 2014 LVM-3/CARE Missionb Experimental

Reentry Experiment

77. IRNSS-1D Mar. 28, 2015 PSLV-C27/IRNSS-1Db Navigation

78. GSAT-6 (INSAT-4E) Aug. 27, 2015 GSLV-D6b Communication

79. Astrosat Sep. 28, 2015 PSLV-C30b Space Sciences

80. GSAT-15 Nov. 11, 2015 Ariane-5 VA-227c Communication,
Navigation

81. IRNSS-1E Jan. 20, 2016 PSLV-C31/IRNSS-1Eb Navigation

2018-19



206 PHYSICS

India has so far also launched 209 foreign satellites from Satish Dhawan Space Center, Sriharikota,
Andhra Pradesh: May 26, 1999 (02); Oct. 22, 2001 (02); Jan. 10, 2007 (02); Apr. 23, 2007 (01); Jan. 21,
2008 (01); Sep. 09, 2012 (02); Feb. 25, 2013 (06); June 30, 2014 (05); July 10, 2015 (05); Sep. 28, 2015
(06); Dec. 16, 2015 (06); June 22, 2016 (27); Sep. 09, 2016 (05); Feb. 15, 2017 (101) and thus setting a
world record; and June 23, 2017 (29). Details can be seen at www.isro.gov.in.

a Launched from Kapustin Yar Missile and Space Complex, Soviet Union (now Russia)
b Launched from Satish Dhawan Space Centre, Sriharikota, Andhra Pradesh
c Launched from Centre Spatial Guyanais, Kourou, French Guiana
d Launched from Air Force Eastern Test Range, Florida
e Launched from Baikonur Cosmodrome, Kazakhstan

82. IRNSS-1F Mar. 10, 2016 PSLV-C32/IRNSS-1Fb Navigation

83. IRNSS-1G Apr. 28, 2016 PSLV-C33/IRNSS-1Gb Navigation

84. Cartosat-2 Series Satellite Jun. 22, 2016 PSLV-C34/CARTOSAT-2 Earth Observation
Series Satelliteb

85. SathyabamaSat Jun. 22, 2016 PSLV-C34/CARTOSAT-2 University/
Series Satelliteb Academic

Institute

86. Swayam Jun. 22, 2016 PSLV-C34/CARTOSAT-2 University/
Series Satelliteb Academic

Institute

87. INSAT-3DR Sep. 08, 2016 GSLV-F05/ Climate &
INSAT-3DRb Environment,

Disaster
Management System

88. ScatSat-1 Sep. 26, 2016 PSLV-C35/ Climate &
SCATSAT-1b Environment

89. Pratham Sep. 26, 2016 PSLV-C35/ University/
SCATSAT-1b Academic Institute

90. PiSat Sep. 26, 2016 PSLV-C35/ University/
SCATSAT-1b Academic Institute

91. GSAT-18 Oct. 06, 2016 Ariane-5 VA-231c Communication

92. ResourceSat-2A Dec. 07, 2016 PSLV-C36/ Earth Observation
RESOURCESAT-2Ab

93. Cartosat -2 Series Satellite Feb. 15, 2017 PSLV-C37/Cartosat -2 Earth Observation
Series Satelliteb

94. INS-1A Feb. 15, 2017 PSLV-C37/Cartosat -2 Experimental
Series Satelliteb

95. INS-1B Feb. 15, 2017 PSLV-C37/Cartosat -2 Experimental
Series Satelliteb

96. GSAT-9 May 05, 2017 GSLV-F09/GSAT-9b Communication

97. GSAT-19 Jun. 05, 2017 GSLV Mk III-D1/ Communication
GSAT-19 Missionb

98. Cartosat-2 Series Satellite Jun. 23, 2017 PSLV-C38/Cartosat-2 Earth Observation
Series Satelliteb

99. NIUSAT Jun. 23, 2017 PSLV-C38/Cartosat-2 University/
Series Satelliteb Academic Institute

100. GSAT-17 Jun. 29, 2017 Ariane-5 VA-238c Communication

101. IRNSS-1H Mission Aug. 31, 2017 PSLV-C39b Communication
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APPENDIX  A 3

SOME IMPORTANT CONSTANTS

Other useful constants
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APPENDIX   A 4
CONVERSION FACTORS

Conversion factors are written as equations for simplicity.

Length Angle and Angular Speed

1 km = 0.6215 mi π rad = 180°

1mi = 1.609 km 1 rad = 57.30°

1m = 1.0936 yd = 3.281 ft = 39.37 in 1° = 1.745 × 10–2 rad

1 in = 2.54 cm 1 rev min–1 = 0.1047 rad s–1

1 ft = 12 in = 30.48 cm 1 rad s–1 = 9.549 rev min–1

1 yd = 3ft = 91.44 cm Mass

1 lightyear = 1 ly = 9.461 x 1015m 1 kg = 1000 g

1 A° = 0.1nm 1 tonne = 1000 kg = 1 Mg

Area 1 u = 1.6606 × 10–27 kg

1 m2 = 104 cm2 1 kg = 6.022 × 1026 u

1km2 = 0.3861 mi2 = 247.1 acres 1 slug = 14.59 kg

1 in2= 6.4516 cm2 1 kg = 6.852 × 10–2
 slug

1ft2= 9.29 x 10-2m2 1 u = 931.50 MeV/c2

1 m2= 10.76 ft2 Density

1 acre = 43,560 ft2 1 g cm–3 = 1000 kg m–3 = 1 kg L–1

1 mi2= 460 acres = 2.590 km2 Force

Volume 1 N = 0.2248 lbf = 105 dyn

1m3= 106cm3 1 lbf = 4.4482 N

1 L = 1000 cm3 = 10-3 m3 1 kgf = 2.2046 lbf

1 gal = 3.786 L Time

1 gal = 4 qt = 8 pt = 128 oz = 231 in3 1 h = 60 min = 3.6 ks

1 in3 = 16.39 cm3 1 d = 24 h = 1440 min = 86.4 ks

1ft3 = 1728 in3 = 28.32 L = 2.832 × 104 cm3 1y = 365.24 d = 31.56 Ms

Speed Pressure

1 km h–1 = 0.2778 m s–1 = 0.6215 mi h–1 1 Pa = 1 N m–2

1mi h–1 = 0.4470 m s–1 = 1.609 km h–1 1 bar = 100 kPa

1mi h–1 = 1.467 ft s–1 1 atm = 101.325 kPa = 1.01325 bar

Magnetic Field 1atm =  14.7 lbf/in2 = 760 mm Hg

1 G = 10–4 T          =  29.9 in Hg = 33.8 ft  H2O

1 T = 1 Wb m–2 = 104 G 1 lbf in–2 = 6.895 kPa

1 torr = 1mm Hg = 133.32 Pa
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Energy Power

1 kW h = 3.6 MJ 1 horsepower (hp) = 550 ft lbf/s

1 cal = 4.186 J       = 745.7 W

1ft lbf = 1.356 J = 1.286 × 10–3 Btu 1 Btu min–1 = 17.58 W

1 L atm = 101.325 J 1 W = 1.341 × 10–3  hp

1 L atm = 24.217 cal        =  0.7376 ft lbf/s

1 Btu = 778 ft lb = 252 cal = 1054.35 J Thermal Conductivity

1 eV = 1.602 × 10–19J 1 W m–1 K–1 = 6.938 Btu in/hft2 °F

1 u c2 = 931.50 MeV 1 Btu in/hft2 °F = 0.1441 W/m K

1 erg = 10–7J

APPENDIX   A 5
MATHEMATICAL FORMULAE

Geometry

Circle of radius r: circumference = 2πr;

area = πr2

Sphere of radius r: area = 4πr2;

volume = 
4

3
3π r

Right circular cylinder of radius r

and height h: area = 2π r2 +2π r h;

volume = hr 2π ;

Triangle of base a and altitude h.

area = 
1

2
  a h

Quadratic Formula

If    ax2 + bx + c = 0,

then   
a2

42
acbb

x
−±−

=

Trigonometric Functions of Angle θθθθθ

      

sin cos

tan cot

sec csc

y x
         

r r

y x
         

x y

r r
         

x y

θ θ

θ θ

θ θ

= =

= =

= =

Pythagorean Theorem

In this right triangle, a2 + b2 = c2

Fig. A 5.2

Triangles

Angles are A, B, C

Opposite sides are a, b, c

Angles A + B + C = 1800

c

C

b

B

a

A sinsinsin
==

c2 = a2 + b2 – 2ab  cos C

Exterior angle D = A + CFig. A 5.1
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Fig. A 5.3

Mathematical Signs and Symbols

= equals
≅ equals approximately
~ is the order of magnitude of
≠ is not equal to
≡ is identical to, is defined as
> is greater than (>> is much greater than)
< is less than (<< is much less than)
≥ is greater than or equal to (or, is no less

than)
≤ is less than or equal to (or, is no more

than)
± plus or minus
∝ is proportional to
∑ the sum of

x or <x > or xav the average value of x

Trigonometric Identities

sin (900 – θ ) = cos θ

cos (900 – θ ) = sin θ

sin θ/ cos θ = tan θ

sin2 θ + cos2 θ =1

sec2 θ – tan2 θ = 1

csc2 θ – cot2 θ  = 1

sin2 θ = 2 sin θ cos θ

cos2 θ = cos2 θ – sin2 θ  = 2cos2 θ –1

          = 1– 2 sin2 θ

sin(α ± β ) = sin α cos β ± cos α sin β

cos (α ± β ) = cos α cos β ∓  sin α sin β

tan (α ± β ) = 

sin α ± sin β = ±( ) ( )2
1

2

1

2
  sin cosa b a bm

cos α + cos β

= ( ) ( )2
1

2

1

2
  cos cos �a a+ b b

cos α – cos β

= - ( ) ( )2
1

2

1

2
  sin sin �a a+ b b

Binomial Theorem

(1– x) =1–
nx

1!
+

n(n -1)x

2!
+.....(x <1)

n

2

2

(1– x) =1m
nx

1!
+

n(n+1)x

2!
+.....(x <1)

-n

2

2

Exponential Expansion

e =1+ x +
x

2!
+

x

3!
+.....

x

2 3

Logarithmic Expansion

Trigonometric Expansion

(θθθθθ in radians)

     

Products of Vectors

Let be unit vectors in the x, y and z

directions.  Then

Any vector a with components ax, ay, and az

along the x,y, and z axes can be written,
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Let a, b and c be arbitary vectors with
magnitudes a, b and c.  Then

( ) ( ) ( )a b c a b a c× = × + ×+

( a) b a ( b) (a b)s s s× = × = ×   (s is a scalar)

Let θ be the smaller of the two angles
between a and b.  Then

θcosabbababa zzyyxx  =++=⋅=⋅ abba

θsinab =× ba

( ) ( ) ( )

ˆ ˆ ˆ

 

ˆ ˆ ˆ

x y z

x y z

y z y z z x z x x y x y

 

 a a a

 b b b

a b b a a b b a a b b a

× = − × =

= − + − + −

i j k

a b b a

 i  j  k

a . (b × c) = b. (c × a) = c . (a × b)

a × (b × c) = (a . c) b – (a . b) c

APPENDIX A 6

SI DERIVED UNITS

A 6.1  Some SI Derived Units expressed in SI Base Units
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A 6.2   SI Derived Units with special names

A 6.3   Some SI Derived Units expressed by means of SI Units with special names

pascal
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APPENDIX  A 7
GENERAL GUIDELINES FOR USING SYMBOLS FOR PHYSICAL QUANTITIES, CHEMICAL

ELEMENTS AND NUCLIDES

• Symbols for physical quantities are normally single letters and printed in italic (or sloping) type.
However, in case of the two letter symbols,  appearing as a factor in a product, some spacing is
necessary to separate this symbol from other symbols.

• Abbreviations, i.e., shortened forms of names or expressions, such as p.e. for potential energy,
are not used in physical equations.  These abbreviations in the text are written in ordinary
normal/roman (upright) type.

• Vectors are printed in bold and normal/roman (upright) type.  However, in class room situations,
vectors may be indicated by an arrow on the top of the symbol.

• Multiplication or product of two physical quantities is written with some spacing between them.
Division of one physical quantity by another may be indicated with a horizontal bar or with

Absorbed dose rate
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solidus, a slash or a short oblique stroke mark (/) or by writing it as a product of the
numerator and the inverse first power of the denominator, using brackets at appropriate
places to clearly distinguish between the numerator and the denominator.

• Symbols for chemical elements are written in normal/roman (upright) type.  The symbol is
not followed by a full stop.
For example, Ca, C, H, He, U, etc.

• The attached numerals specifying a nuclide are placed as a left subscript (atomic number)
and superscript (mass number).

For example, a U-235 nuclide is expressed as 92
235 U  (with 235 expressing the mass number

and 92 as the atomic number of uranium with chemical symbol U).
• The right superscript position is used, if required, for indicating a state of ionisation (in

case of ions).

For example, Ca2+,  −3
4PO

APPENDIX  A 8

GENERAL  GUIDELINES FOR USING SYMBOLS FOR SI UNITS, SOME OTHER UNITS, AND
SI PREFIXES

• Symbols for units of physical quantities are printed/written in Normal/Roman (upright) type.

• Standard and recommended symbols for units are written in lower case roman (upright)

type, starting with small letters. The shorter designations for units such as kg, m, s, cd,
etc., are symbols and not the abbreviations.  The unit names are never capitalised. However,
the unit symbols are capitalised only if the symbol for a unit is derived from a proper name
of scientist, beginning with a capital, normal/roman letter.
For example, m for the unit ‘metre’, d for the unit ‘day’, atm for the unit ‘atmospheric
pressure’, Hz for the unit ‘hertz’, Wb for the unit ‘weber’, J for the unit ‘joule’, A for the unit
‘ampere’, V for the unit ‘volt’, etc.  The single exception is L, which is the symbol for the
unit ‘litre’.  This exception is made to avoid confusion of the lower case letter l with the
Arabic numeral l.

• Symbols for units do not contain any final full stop at the end of recommended   letter and

remain unaltered in the plural, using only singular form of the unit.
For example, for a length of 25 centimetres the unit symbol is written as 25 cm

     and not 25 cms or 25 cm. or 25 cms., etc.

• Use of solidus ( / ) is recommended only for indicating a division of one letter unit symbol by

another unit symbol.  Not more than one solidus is used.
For example :
m/s2 or m s–2 (with a spacing between m and s–2) but not m/s/s;
1 Pl =1 N s m –2 = 1 N s/m2 = 1 kg/s m=1 kg m–1 s–1, but not 1 kg/m/s;
J/K mol or J K–1 mol–1, but not J/K/mol; etc.

• Prefix symbols are printed in normal/roman (upright) type without spacing between the

prefix symbol and the unit symbol.  Thus certain approved prefixes written very close to the
unit symbol are used to indicate decimal fractions or multiples of a SI unit, when it is
inconveniently small or large.
For example :
megawatt ( 1MW = 106 W); nanosecond (1 ns = 10–9 s);
centimetre (1 cm = 10–2 m); picofarad (1 pF = 10–12 F);.
kilometre ( 1 km = 103 m); microsecond (1µs = 10–6 s);
millivolt (1 mV= 10–3  V);     gigahertz (1GHz = 109 Hz);
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kilowatt-hour (1 kW h = 103 W h = 3.6 MJ = 3.6 × 106 J);
microampere  (1µ A = 10–6 A); micron (1µm = 10–6 m);
angstrom (1 Α° =0.1 nm = 10–10 m); etc.

The unit ‘micron’ which equals 10–6 m, i.e. a micrometre, is simply the name given to
convenient sub-multiple of the metre.  In the same spirit, the unit ‘fermi’, equal to a
femtometre or 10–15 m has been used as the convenient length unit in nuclear studies.
Similarly, the unit ‘barn’, equal to 10–28 m2, is a convenient measure of cross-sectional
areas in sub-atomic particle collisions.  However, the unit ‘micron’ is preferred over the
unit ‘micrometre’ to avoid confusion of the ‘micrometre’ with the length measuring
instrument called ‘micrometer’. These newly formed multiples or sub-multiples (cm, km,
µm, µs, ns) of SI units, metre and second, constitute a new composite inseparable symbol
for units.

• When a prefix is placed before the symbol of a unit, the combination of prefix and symbol is

considered as a new symbol, for the unit, which can be raised to a positive or negative
power without using brackets.  These can be combined with other unit symbols to form
compound unit.  Rules for binding-in indices are not those of ordinary algebra.
For example :
cm3 means always (cm)3 = (0.01 m)3 = (10–2 m)3 = 10–6 m3, but never 0.01 m3 or
10–2 m3 or 1cm3 (prefix c with a spacing with m3 is meaningless as prefix c is to be attached
to a unit symbol and it has no physical significance or independent existence without
attachment with a unit symbol).
Similarly, mA2 means always (mA)2= (0.001A)2 = (10–3 A)2 =10–6 A2, but never 0.001 A2 or
10–3 A2 or m A2;
1 cm–1 = (10–2m)–1=102 m–1, but not 1c m–1 or 10–2 m–1;
1µs–1 means always (10–6s)–1=106 s–1, but not 1 × 10–6 s–1;
1 km2 means always (km)2 = (103 m)2=106 m2, but not 103 m2;
1mm2 means always (mm)2= (10–3 m)2=10–6 m2, but not 10–3 m2.

• A prefix is never used alone.  It is always attached to a unit symbol and written or fixed

before (pre-fix) the unit symbol.
For example :
103/m3 means 1000/m3 or 1000 m-3, but not k/m3 or k m-3.
106/m3 means 10,00,000/m3 or 10,00,000 m–3, but not M/m3 or M m–3

• Prefix symbol is written very close to the unit symbol without spacing between them, while
unit symbols are written separately with spacing when units are multiplied together.
For example :
m s-1 (symbols m and s–1, in lower case, small letter m and s, are separate and independent
unit symbols  for metre and second respectively, with spacing between them) means ‘metre
per second’, but not ‘milli per second’.
Similarly, ms–1 [symbol m and s are written very close to each other, with prefix symbol m
(for prefix milli) and unit symbol s, in lower case, small letter (for unit ‘second’) without
any spacing between them and making ms as a new composite unit] means ‘per millisecond’,
but never ‘metre per second’.
mS–1[symbol m and S are written very close to  each other, with prefix symbol m (for prefix
milli) and unit symbol S, in capital roman letter S (for unit ‘siemens’) without any spacing
between them, and making mS as a new composite unit] means ‘per millisiemens’, but
never ‘per millisecond’.
C m [symbol C and m are written separately, representing unit symbols C (for unit ‘coulomb’)
and m (for unit ‘metre’), with spacing between them] means ‘coulomb metre’, but never
‘centimetre’, etc.

• The use of double prefixes is avoided when single prefixes are available.

For example :
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10–9 m = 1nm (nanometre), but not 1mµm (millimicrometre),
10–6 m= 1µm (micron), but not 1mmm(millimillimetre),
10–12 F= 1 pF (picofarad), but not 1µµF (micromicrofarad),
109 W=1 GW (giga watt), but not 1 kMW (kilomegawatt), etc.

• The use of a combination of unit and the symbols for units is avoided when the physical quantity

is expressed by combining two or more units.
For example :
joule per mole kelvin is written as J/mol K or J mol–1 K–1, but not joule/mole K or
J/ mol kelvin or J/mole K, etc.
joule per tesla is written as J/T or J T–1, but not joule /T or J per tesla or J/tesla, etc.
newton metre second is written as N m s, but not Newton m second or N m second or N metre s
or newton metre s, etc.
joule per kilogram kelvin is written as J/kg K or J kg–1 K–1, but not J/kilog  K or joule/kg K or J/
kg kelvin or J/kilogram K, etc.

• To simplify calculations, the prefix symbol is attached to the unit symbol in the numerator and

not to the denominator.
For example :
106 N/m2 is written more conveniently as MN/m2, in preference to N/mm2.
A preference has been expressed for multiples or sub-multiples involving the factor 1000, 10+3n

where n is the integer.

• Proper care is needed when same symbols are used for physical quantities and units of    physical

quantities.
For example :
The physical quantity weight (W) expressed as a product of mass (m) and acceleration due to
gravity (g) may be written in terms of symbols W, m and g printed in italic ( or sloping) type as W
= m g, preferably with a spacing between m and g.  It should not be confused with the unit
symbols for the units watt (W), metre (m) and gram (g).  However, in the equation W=m g, the
symbol W expresses the weight with a unit symbol J, m as the mass with a unit symbol kg and
g as the acceleration due to gravity with a unit symbol m/s2.  Similarly, in equation F = m a, the
symbol F expresses the force with a unit symbol N, m as the mass with a unit symbol kg, and a
as the acceleration with a unit symbol m/s2.  These symbols for physical quantities should not
be confused with the unit symbols for the units ‘farad’ (F), ‘metre’(m) and ‘are’ (a).
Proper distinction must be made while using the symbols h (prefix hecto, and unit hour), c
(prefix centi, and unit carat), d (prefix deci and unit day), T (prefix tera, and unit tesla), a (prefix
atto, and unit are), da (prefix deca, and unit deciare), etc.

• SI base unit ‘kilogram’ for mass is formed by attaching SI prefix (a multiple equal to 103) ‘kilo’ to

a cgs (centimetre, gram, second) unit ‘gram’ and this may seem to result in an anomaly.  Thus,
while a thousandth part of unit of length (metre) is called a millimetre (mm), a thousandth part
of the unit of mass (kg) is not called a millikilogram, but just a gram. This appears to give the
impression that the unit of mass is a gram (g) which is not true. Such a situation has arisen
because we are unable to replace the name ‘kilogram’ by any other suitable unit.  Therefore, as
an exception, name of the multiples and sub-multiples of the unit of mass are formed by attaching
prefixes to the word ‘gram’ and not to the word ‘kilogram’.
For example :
103 kg =1 megagram ( 1Mg), but not 1 kilo kilogram (1 kkg);
10–6 kg = 1 milligram ( 1 mg), but not 1 microkilogram ( 1µkg);
10–3 kg = 1 gram (1g), but not 1 millikilogram (1 mkg), etc.

It may be emphasised again that you should use the internationally approved and recommended
symbols only. Continual practice of following general rules and guidelines in unit symbol writing
would make you learn mastering the correct use of SI units, prefixes and related symbols for physical
quantities in a proper perspective.
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Chapter   2

2.1 (a) 10–6 ;  (b) 1.5 × 104 ; (c) 5 ; (d) 11.3, 1.13 × 104.

2.2 (a) 107 ;   (b) 10–16  ; (c) 3.9 × 104 ; (d) 6.67 × 10–8.

2.5 500

2.6 (c)

2.7 0.035 mm

2.9 94.1

2.10 (a) 1 ; (b) 3 ; (c) 4 ; (d) 4 ; (e) 4 ; (f) 4.

2.11 8.72 m2; 0.0855 m3

2.12 (a) 2.3 kg ; (b) 0.02 g

2.13 13%; 3.8

2.14 (b) and (c) are wrong on dimensional grounds. Hint: The argument of a trigonometric
function must always be dimensionless.

2.15 The correct formula is m = m0 
(1 – v2/c2)–½

2.16 ≅ 3 × 10–7 m3

2.17 ≅  104; intermolecular separation in a gas is much larger than the size of a molecule.

2.18 Near objects make greater angle than distant (far off) objects at the eye of the observer.
When you are moving, the angular change is less for distant objects than nearer objects.
So, these distant objects seem to move along with you, but the nearer objects in opposite
direction.

2.19 ≅ 3 × 1016 m; as a unit of length 1 parsec is defined to be equal to  3.084 × 1016 m.

2.20 1.32 parsec; 2.64″ (second of arc)

2.23 1.4 × 103 kg m-3; the mass density of the Sun is in the range of densities of liquids /
solids and not gases. This high density arises due to inward gravitational attraction
on outer layers due to inner layers of the Sun.

2.24 1.429 × 105  km

 ANSWERS
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2.25 Hint: tan θ must be dimensionless.  The correct formula is tan θ = v/v ′′′′′ where v ′′′′′ is the
speed of rainfall.

2.26 Accuracy of 1 part in 1011 to 1012

2.27 ≅  0.7 × 103 kg m–3. In the solid phase atoms are tightly packed, so the atomic mass
density is close to the mass density of the solid.

2.28 ≅ 0.3 × 1018 kg m–3 – Nuclear density is typically 1015 times atomic density of matter.

2.29 3.84 × 108 m

2.30 55.8 km

2.31 2.8 × 1022  km

2.32 3,581 km

2.33 Hint: the quantity e4/ (16 π 2 ∈2

0 
m

p
 m

e

2

 
c3  G ) has the dimension of time.

Chapter  3

3.1  (a), (b)

3.2 (a) A....B, (b) A....B, (c) B....A, (d) Same, (e) B....A....once.

3.4 37 s

3.5 1000 km/h

3.6 3.06 m s–2 ; 11.4 s

3.7 1250 m (Hint: view the motion of B relative to A)

3.8 1 m s–2 (Hint: view the motion of B and C relative to A)

3.9 T = 9 min, speed = 40 km/h.  Hint:  v T / ( v – 20 ) =18;  v T / ( v + 20 ) = 6

3.10 (a) Vertically downwards; (b) zero velocity, acceleration of 9.8 m s-2 downwards;
(c) x > 0 (upward and downward motion); v < 0 (upward), v > 0 (downward), a > 0
throughout; (d) 44.1 m, 6 s.

3.11 (a) True;, (b) False; (c) True (if the particle rebounds instantly with the same speed, it
implies infinite acceleration which is unphysical); (d) False (true only when the chosen
positive direction is along the direction of motion)

3.14 (a) 5 km h–1, 5 km h–1; (b) 0, 6 km h–1;  (c)  
15

8
 km h–1, 

45

8
 km h–1

3.15 Because, for an arbitrarily small interval of time, the magnitude of displacement is equal
to the length of the path.

3.16 All the four graphs are impossible. (a) a particle cannot have two different positions at
the same time;  (b) a particle cannot have velocity in opposite directions at the same
time;  (c) speed is  always non-negative;  (d) total path length of a particle can never
decrease with time. (Note, the  arrows on  the graphs are meaningless).

3.17 No, wrong. x- t plot does not show the trajectory of a particle. Context: A body is dropped
from a tower (x = 0) at  t = 0.

3.18 105 m s-1
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3.19 (a)  A ball at rest on a smooth floor is kicked, it rebounds from a wall with reduced speed
and moves to the opposite wall which stops it; (b) A ball thrown up with some initial
velocity rebounding from the floor with reduced speed after each hit; (c) A uniformly
moving cricket ball turned back by hitting it with a bat for a very short time-interval.

3.20 x < 0, v < 0, a  > 0;  x > 0, v > 0, a < 0;  x < 0, v > 0, a > 0.

3.21 Greatest in 3, least in 2;  v > 0 in 1 and 2, v < 0 in 3.

3.22 Acceleration magnitude greatest in 2; speed greatest in 3;  v > 0 in 1, 2 and 3; a > 0 in 1
and 3, a  < 0 in 2; a = 0 at A, B, C, D.

3.23 A straight line inclined with the time-axis for uniformly accelerated motion; parallel to
the time- axis for uniform motion.

3.24 10 s, 10 s

3.25 (a) 13 km h–1 ; (b) 5 km h–1;  (c) 20 s in either direction, viewed by any one of the parents,
the speed of the child is 9 km h–1 in either direction; answer to (c) is unaltered.

3.26 x
2  

– x
1 
= 15 t (linear part);  x

2  
– x

1  
=  200 + 30 t – 5 t2 (curved part).

3.27 (a) 60 m, 6 m s-1  ; (b) 36 m, 9 m s-1

3.28 (c), (d), (f)

Chapter   4

4.1 Volume, mass, speed, density, number of moles, angular frequency are scalars; the rest
are vectors.

4.2 Work, current

4.3 Impulse

4.4 Only (c) and (d) are permissible

4.5 (a) T, (b) F, (c) F, (d) T, (e) T

4.6 Hint: The sum (difference) of any two sides of a triangle is never less (greater) than the
third side. Equality holds for collinear vectors.

4.7 All statements except (a) are correct

4.8 400 m for each; B

4.9 (a) O;  (b) O;  (c) 21.4 km h–1

4.10 Displacement of magnitude 1 km and direction 60o with the initial direction; total path
length = 1.5 km (third turn); null displacement vector; path length = 3 km (sixth turn);
866 m, 30o, 4 km (eighth turn)

4.11 (a) 49.3 km h–1 ; (b) 21.4 km h–1. No, the average speed equals average velocity magnitude
only for a straight path.

4.12 About 18o with the vertical, towards the south.

4.13 15 min, 750 m

4.14 East (approximately)

4.15 150.5 m

4.16 50 m
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4.17 9.9 m s-2, along the radius at every point towards the centre.

4.18 6.4 g

4.19 (a) False (true only for uniform circular motion)

(b) True, (c) True.

4.20 (a) v i j( ) ( . � �)t t= −3 0 4.0  � ( ) �a jt = − 4.0

(b) 8.54 m s–1,  70° with x-axis.

4.21 (a) 2 s, 24 m, 21.26 m s–1

4.22 2 , 45o with the x-axis;  2 , – 45o  with the x - axis,  ( )5 2 1 2/ , /− .

4.23 (b) and (e)

4.24 Only (e) is true

4.25 182 m s–1

4.27 No. Rotations in general cannot be associated with vectors

4.28 A vector can be associated with a plane area

4.29 No

4.30 At an angle of sin-1 (1/3) = 19.5° with the vertical; 16 km.

4.31 0.86 m s–2,  54.5° with the direction of velocity

Chapter    5

5.1 (a) to (d)  No net force according to the First Law
(e)  No force, since it is far away  from all material agencies producing electromagnetic
and gravitational forces.

5.2 The only force in each case is the force of gravity, (neglecting effects of air) equal to
0.5 N vertically downward. The answers do not change, even if the motion of the pebble
is not along the vertical. The pebble is not at rest at the highest point. It has a constant
horizontal component of velocity throughout its motion.

5.3 (a) 1 N vertically downwards (b)  same as in (a)
(c) same as in (a);  force at an instant depends on the situation at that instant, not on
history.
(d)  0.1 N in the direction of motion of the train.

5.4 (i) T

5.5 a = – 2.5 m s–2.  Using v = u + at,  0 = 15 – 2.5 t i.e.,    t = 6.0 s

5.6 a = 1.5/25  =  0.06 m s–2

F =  3 × 0.06  =  0.18 N in the direction of motion.

5.7 Resultant force = 10 N at an angle of tan–1 (3/4) = 37° with the direction of 8 N force.
Acceleration = 2 m s–2 in the direction of the resultant force.

5.8 a = – 2.5 m s–2 , Retarding force = 465 × 2.5 = 1.2 × 103  N

5.9 F – 20,000 × 10 = 20000 × 5.0,     i.e.,   F = 3.0  × 105  N

5.10 a = – 20 m s–2 0  ≤  t  ≤  30 s
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t = –5 s : x = u t = – 10 × 5 = –50 m

t = 25 s : x  =  u t + (½)  a t2  =  (10 × 25 – 10 × 625)m  =  – 6 km

t = 100 s : First consider motion up to 30 s

x
1 
= 10 × 30 – 10 × 900 =  – 8700 m

At  t = 30 s,   v = 10 – 20 × 30 = –590 m s-1

For  motion from 30 s to 100 s : x
2 
= – 590 × 70 = – 41300 m

x = x
1
 + x

2 
= – 50 km

5.11 (a)  Velocity of car ( at t = 10 s ) = 0 + 2 × 10 = 20 m s–1

By the First Law, the horizontal component of velocity is 20 m s–1 throughout.
Vertical component of velocity (at t = 11s) =  0 + 10 × 1  =  10 m s–1

Velocity of stone (at t = 11s) = 20 10 500 22 4
2 2

+ = = .
–1

  m s  at an angle of tan–1 ( ½) with

the horizontal.
(b)10 m s-2 vertically downwards.

5.12 (a) At the extreme position, the speed of the bob is zero. If the string is cut, it  will fall
vertically downwards.
(b) At the mean position, the bob has a horizontal velocity. If the string is cut, it will fall
along a parabolic path.

5.13 The reading on the scale is a measure of the force on the floor by the man.  By the Third
Law, this is equal and opposite to the normal force N on the man by the floor.

(a) N = 70 × 10 = 700 N ; Reading is 70 kg
(b) 70 × 10 – N = 70 × 5 ; Reading is 35 kg
(c) N – 70 × 10 = 70 × 5 ; Reading is 105 kg
(d) 70 × 10 – N = 70 × 10; Reading would be zero; the scale would read zero.

5.14 (a) In all the three intervals, acceleration and, therefore, force are zero.
(b) 3 kg m s–1 at  t = 0  ; (c) –3 kg m s–1  at  t = 4 s.

5.15 If the 20 kg mass is pulled,
600 – T = 20 a, T = 10 a
a = 20 m s–2, T = 200 N

If the 10 kg mass is pulled, a = 20 m s–2, T = 400 N

5.16 T – 8 × 10 = 8 a,12 × 10 – T = 12a

i.e. a = 2 m s–2,  T  =  96 N

5.17 By momentum conservation principle, total final momentum is zero.  Two momentum
vectors cannot sum to a null momentum unless they are equal and opposite.

5.18 Impulse on each ball = 0.05 ×12 = 0.6 kg m s-1 in magnitude.  The two impulses are
opposite in direction.

5.19 Use momentum conservation :  100 v = 0.02 ×  80
v = 0.016 m s–1 = 1.6 cm s–1

5.20 Impulse is directed along the bisector of the initial and final directions.  Its magnitude is
0.15  ×  2  ×  15 ×  cos 22.5° = 4.2  kg m s–1

5.21
–140

2 1.5 2 m s
60

v π π= × × =

2 20.25 4
6.6 N

1.5

mv
T

R

π×
= = =
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2
–1200 , which gives 35 m smax

max

mv
v

R
= =

5.22 Alternative (b) is correct, according to the First Law

5.23 (a) The horse-cart system has no external force in empty space. The mutual forces
between  the horse and the cart cancel  (Third Law).  On the ground, the contact force
between the system and the ground (friction) causes their motion from rest.

(b) Due to inertia of the body not directly in contact with the seat.
(c) A lawn mower is pulled or pushed by applying force at an angle. When you push, the
normal force (N ) must be more than its weight, for equilibrium in the vertical direction.
This results in greater friction f ( f ∝ N ) and, therefore, a greater applied force to move.
Just the opposite happens while pulling.

(d) To reduce the rate of change of momentum and hence to reduce the force necessary
to stop the ball.

5.24 A body with a constant speed of 1 cm s-1 receives impulse of magnitude
0.04 kg × 0.02 m s–1 =   8 × 10–4 kg m s–1  after every  2 s from the walls at x = 0 and
x = 2 cm.

5.25 Net force  =  65 kg × 1 m s–2  =  65 N

a
max

  =  µ
s
 g  =  2 m s–2

5.26 Alternative (a) is correct.  Note mg + T
2
 = mv

2

2/R  ;    T
1
 – mg = mv

1

2/R

The moral is : do not confuse the actual material forces on a body (tension, gravitational
force, etc) with the effects they produce : centripetal acceleration v

2

2/R or v
1

2/R in this
example.

5.27 (a) ‘Free body’  :  crew and passengers

Force on the system by the floor = F upwards; weight of system = mg downwards;

∴ F – mg = ma

F – 300 × 10 = 300 × 15

F  = 7.5 × 103 N upward

By the Third Law, force on the floor by the crew and passengers = 7.5 × 103 N downwards.

(b) ‘Free body’ :  helicopter plus the crew and passengers

Force by air on the system = R upwards; weight of system = mg downwards

∴ R – mg = ma

R – 1300 × 10  =  1300 × 15

R  = 3.25 × 104 N upwards

By the Third Law, force (action) on the air by the helicopter = 3.25 × 104 N downwards.

(c) 3.25 × 104 N upwards

5.28 Mass of water hitting the wall per second

= 103  kg m–3 × 10–2  m2 × 15 m s–1 = 150 kg s –1

Force by the wall =  momentum loss of water per second = 150 kg s–1 ×  15 m s-1 = 2.25

× 103  N

5.29 (a)  3 m g (down) (b) 3 m g (down) (c)  4 m g (up)

5.30 If N is the normal force on the wings,
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2

2

cos ,       sin

200 200
which  give      15km

  tan   10 tan15

mv
N mg N

R

v
R

g

θ θ

θ

= =

×
= = =

× °

5.31 The centripetal force is provided by the lateral thrust by the rail on the flanges of the
wheels.  By the Third Law, the train exerts an equal and opposite thrust on the rail
causing its wear and tear.

Angle of banking = 
2

–1 –1 15 15
tan tan 37

 30 10

v

R g

  × 
= °   

×  
�

5.32 Consider the forces on the man in equilibrium : his weight, force due to the rope and
normal  force due to the floor.

(a)  750 N (b)  250 N; mode (b)  should be adopted.

5.33 (a) T – 400  =  240, T = 640 N

(b) 400 – T = 160, T = 240 N

(c) T = 400 N

(d) T = 0

The rope will break in case (a).

5.34 We assume perfect contact between bodies A and B and the rigid partition.  In that
case, the self-adjusting normal force on B by the partition (reaction) equals 200 N.
There is no impending motion and no friction.  The action-reaction forces between A
and B are also 200 N. When  the partition is removed, kinetic friction comes into play.

Acceleration of A + B  =  [ 200 – ( 150 × 0.15 ) ] / 15 =11.8 m s–2

Friction on A = 0.15 × 50 = 7.5  N

200 – 7.5 – FAB = 5 × 11.8

FAB = 1.3 × 102 N;   opposite to motion .

FBA = 1.3 × 102 N;  in the direction of motion.

5.35 (a) Maximum frictional force possible for opposing impending relative motion between
the block and the trolley = 150 × 0.18 = 27 N,  which is more than the frictional force of
15 × 0.5 = 7.5 N needed to accelerate the box with the trolley. When the trolley moves
with uniform velocity, there is no force of friction acting on the block.

(b) For the accelerated (non-inertial) observer, frictional force is opposed by the pseudo-
force of the same magnitude, keeping the box at rest relative to the observer.  When the
trolley moves with uniform velocity there is no pseudo-force for the moving (inertial)
observer and no friction.

5.36 Acceleration of the box due to friction = µg = 0.15 × 10 = 1.5 m s–2.  But the acceleration
of the truck is greater.  The acceleration of the box relative to the truck is 0.5 m s-2

towards the rear end.  The time taken for the box to fall off the truck = 2 5
20 s

0.5

×
= .

During this time, the truck covers a distance = ½  × 2 × 20 = 20 m.
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5.37 For the coin to revolve with the disc, the force of friction should be enough to provide the

necessary centripetal force, i.e gmµ
r

m
≤

2v
.  Now v = rω, where 

T

π2
ω = is the angular

frequency of the disc.  For a given µ and ω, the condition is r ≤ µg / ω2.  The condition is
satisfied by the nearer coin ( 4 cm from the centre).

5.38 At the uppermost point, ,
2

R

m
mgN

v
=+ where N is the normal force (downwards) on the

motorcyclist by the ceiling of the chamber.  The minimum possible speed at the uppermost
point corresponds to N = 0.

–1
mini.e. 25 10 16 m sv R g= = × =

5.39 The horizontal force N by the wall on the man provides the needed centripetal force :    N
= m R ω2.  The frictional force f (vertically upwards) opposes the weight mg.  The man
remains stuck to the wall after the floor is removed if mg = f < µ N i.e. mg < µ m R ω2.  The

minimum angular speed of rotation of the cylinder  is == Rµ/gminω 5 s–1

5.40 Consider the free-body diagram of the bead when the radius vector joining the centre of
the wire makes an angle θ with the vertical downward direction.  We have
mg = N cos θ and m R sin θ  ω2 = N sin θ.  These equations give cos θ = g/Rω2.  Since cos θ ≤ 1,

the bead remains at its lowermost point for 
R

g
≤ω .

For 060θ.e.i
2

1
θcos,

2
===

R

g
ω .

Chapter    6

6.1 (a) +ve (b) –ve (c) –ve (d) + ve              (e) – ve

6.2 (a) 882 J ;  (b) –247 J;  (c) 635 J ;   (d) 635 J;
Work done by the net force on a body equals change in its kinetic energy.

6.3 (a)    x >  a ; 0 (c)  x < a,  x > b ; - V1

(b)  −∞ < x  < ∞; V
1

(d) - b/2  <  x  < - a / 2,   a / 2 <  x  <  b / 2;  -V
1

6.5 (a) rocket; (b) For a conservative force work done over a path is minus of change in
potential energy. Over a complete orbit, there is no change in potential energy;  (c) K.E.
increases, but P.E. decreases, and the sum decreases due to dissipation against friction;
(d) in the second case.

6.6 (a) decrease;  (b) kinetic energy; (c) external force; (d) total linear momentum, and also
total energy (if the system of two bodies is isolated).

6.7 (a) F ;  (b) F ;  (c) F ;  (d) F (true usually but not always, why?)

6.8 (a) No
(b) Yes
(c) Linear momentum is conserved during an inelastic collision, kinetic energy is, of

course, not conserved even after the collision is over.
(d) elastic.

6.9 (b) t
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6.10 (c) t3/2

6.11 12 J

6.12 The electron is faster,  v
e 
/ v

p  
= 13.5

6.13 0.082 J in each half ;   – 0.163 J

6.14 Yes, momentum of the molecule + wall system is conserved.  The wall has a recoil
momentum such that the momentum of the wall + momentum of the outgoing molecule
equals momentum of the incoming molecule, assuming the wall to be stationary initially.
However, the recoil momentum produces negligible velocity because of the large mass of
the wall.  Since kinetic energy is also conserved, the collision is elastic.

6.15 43.6 kW

6.16 (b)

6.17 It transfers its entire momentum to the ball on the table, and does not rise at all.

6.18 5.3 m s-1

6.19 27 km h–1 (no change in speed)

6.20 50 J

6.21 (a) m Avtρ= (b) 3 /2K Av tρ=    (c) P = 4.5 kW

6.22 (a) 49,000 J (b) 6.45 10-3 kg

6.23 (a) 200 m2(b) comparable to the roof of a large house of dimension 14m × 14m.

6.24 21.2 cm, 28.5 J

6.25 No, the stone on the steep plane reaches the bottom earlier; yes, they reach with the
same speed v, [since  mgh =(1/2) m v2 ]

v
B
 = v

C
 = 14.1 m s–1 , t

B
 = 2 2  s ,  t

C
  = 2 2  s

6.26 0.125

6.27 8.82 J for both cases.

6.28 The child gives an impulse to the trolley at the start and then runs with a constant
relative velocity of 4 m s–1 with respect to the trolley’s new velocity.  Apply momentum
conservation for an observer outside. 10.36 m s–1, 25.9 m.

6.29 All except (V) are impossible.

Chapter    7

7.1 The geometrical centre of each. No, the CM may lie outside the body, as in case of a

ring, a hollow sphere, a  hollow cylinder, a hollow cube etc.

7.2 Located on the line joining H and C1 nuclei at a distance of 1.24 Å from the H end.

7.3 The speed of the CM of the (trolley + child) system remains unchanged (equal to v)
because no external force acts on the system.  The forces involved in running on the
trolley are internal to this system.

7.6 l
z
 = xp

y
 – yp

x
, l

x
 = yp

z
 – zp

y
, l

y
 = zp

x
 – xp

z

7.8 72 cm
7.9 3675 N  on each front wheel, 5145 N on each back wheel.
7.10 (a) 7/5 MR2 (b) 3/2 MR2

2018-19



232 PHYSICS

7.11 Sphere

7.12 Kinetic Energy = 3125 J; Angular Momentum = 62.5 J s

7.13 (a)  100 rev/min (use angular momentum conservation).

(b)  The new kinetic energy is 2.5 times the initial kinetic energy of rotation.  The child
uses his internal energy to increase his rotational kinetic energy.

7.14 25 s-2;  10 m s-2

7.15 36 kW

7.16 at R/6 from the center of original disc opposite to the center of cut portion.

7.17 66.0 g

7.18 (a) Yes; (b) Yes, (c) the plane with smaller inclination (äa α sin θ)

7.19 4J

7.20 6.75×1012 rad s–1

7.21 (a) 3.8 m (b) 3.0 s

7.22 Tension = 98 N, N
B
 = 245 N, N

C
 = 147 N.

7.23 (a) 59 rev/min, (b) No, the K.E. is increased and it comes from work done by man in
the process.

7.24 0.625 rad s–1

7.27 (a)  By angular momentum conservation, the common angular speed

ω =  (I
1
 ω

1
  +  I

2
 ω

2
)  / (I

1
  +  I

2
)

(b)  The loss is due to energy dissipation in frictional contact which brings the two

discs to a common angular speed ω.  However, since frictional torques are internal

to the system, angular momentum is unaltered.

7.28 Velocity of A  = ω
o
 R in the same direction as the arrow; velocity of B = ω

o 
R in the

opposite direction to the arrow; velocity of C = ω
o
 R/2 in the same direction as the

arrow.  The disc will not roll on a frictionless plane.

7.29 (a)  Frictional force at B  opposes velocity of B.  Therefore, frictional force is in the same
direction as the arrow.  The sense of frictional torque is such as to oppose angular

motion.  ωωωωω
o
 and τττττ are both normal to the paper, the first into the paper, and the second

coming out of the paper.

(b)  Frictional force decreases the velocity of the point of contact B.  Perfect rolling
ensues when this velocity is zero. Once this is so, the force of friction is zero.

7.30 Frictional force causes the CM to accelerate from its initial zero velocity. Frictional

torque causes retardation in the initial angular speed ω
o
. The equations of motion are

:      µ
k
 m g = m a and µ

k
 m g R  = – Iα, which yield  v = µ

k
 g t, ω  =  ω

o
  – µ

k  
m g R t / I.  Rolling

begins when v = R ω.  For a ring, I  =  m R2, and rolling begins at t = ω
o
  R/2 µ

k 
g. For a

disc, I = ½ m R2 and rolling starts at break line t =  R ω
o
/3 µ

k
 g.  Thus, the disc begins to

roll earlier than the ring, for the same R and ω
o
.  The actual times can be obtained for

R = 10 cm,  ω
o
  =  10 π  rad s–1, µ

k
  =  0.2
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7.31 (a)  16.4 N

(b)  Zero

(c)   37° approx.

Chapter    8

8.1 (a ) No.
(b) Yes, if the size of the space ship is large enough for him to detect the variation in g.

(c) Tidal effect depends inversely on the cube of the distance unlike force, which depends
inversely on the square of the distance.

8.2 (a)  decreases; (b) decreases; (c) mass of the body; (d) more.

8.3 Smaller by a factor of 0.63.

8.5 3.54 × 108 years.

8.6 (a) Kinetic energy, (b) less,

8.7 (a) No, (b) No, (c) No, (d) Yes

[The escape velocity is independent of mass of the body and the direction of projection.
It depends upon  the gravitational potential at the point from where the body is launched.
Since this potential depends (slightly) on the latitude and height of the point, the escape
velocity (speed) depends (slightly) on these factors.]

8.8  All quantities vary over an orbit except angular momentum and total energy.

8.9  (b), (c) and (d)

8.10 and 8.11 For  these two problems, complete the hemisphere to sphere. At both P, and C,
potential is constant and hence intensity = 0. Therefore, for the hemisphere, (c) and (e)
are correct.

8.12 2.6 × 108 m

8.13 2.0 × 1030 kg

8.14 1.43 × 1012 m

8.15 28 N

8.16 125 N

8.17 8.0 × 106 m from the earth’s centre

8.18 31.7 km/s

8.19 5.9 × 109 J

 P                 C
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8.20 2.6 × 106 m/s

8.21 0, 2.7 × 10-8 J/kg; an object placed at the mid point is in an unstable equilibrium

8.22 –9.4 × 106 J/kg

8.23 G M / R2 = 2.3 × 1012 m s-2 , ω2 R = 1.1 × 106 m s-2; here ω is the angular speed of rotation.
Thus in the rotating frame of the star, the inward force is much greater than the outward
centrifugal force at its equator. The object will remain stuck (and not fly off due to
centrifugal force). Note, if angular speed of rotation increases say by a factor of 2000,
the object will fly off.

8.24 3 × 1011 J

8.25 495 km
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